ZKX's LAB

“费马大定理”是被谁在什么时候如何证明的? 费马原理有人证明出来吗

2020-07-19知识17

费马原理现在有证明吗?在几何光学中是如何证明的呢? http://wenku.baidu.com/view/8423e1c39ec3d5bbfd0a742e.html看看这篇文章,相信会对你有帮助的。“费马大定理”是被谁在什么时候如何证明的? 马猜想〔Fermat's conjecture〕又称费马大定理或费马问题,是数论中最著名的世界难题之一.1637年,法国数学家费马在巴歇校订的希腊数学家丢番图的《算术》第II卷第8命题旁边写道:「将一个立方数分为两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的.关于此,我确信已发现一种美妙的证法,可惜这里空白的地方太小,写不下.」费马去世后,人们找不到这个猜想的证明,由此激发起许多数学家的兴趣.欧拉、勒让德、高斯、阿贝尔、狄利克雷、柯西等大数学家都试证过,但谁也没有得到普遍的证法.300多年以来,无数优秀学者为证明这个猜想,付出了巨大精力,同时亦产生出不少重要的数学概念及分支.若用不定方程来表示,费马大定理即:当n>;2时,不定方程xn+y n=z n 没有xyz≠0的整数解.为了证明这个结果,只需证明方程x4+y 4=z 4,(x,y)=1和方程xp+yp=zp,(x,y)=(x,z)=(y,z)=1〔p是一个奇素数〕均无xyz≠0的整数解.n=4的情形已由莱布尼茨和欧拉解决.费马本人证明了p=3的情,但证明不完全.勒让德〔1823〕和狄利克雷〔1825〕证明了p=5的情形.1839年,拉梅证明了p=7的情形.1847年,德国数学家库默尔对费马猜想作出了突破性的工作.他创立了理想数论,这使得他。费马点的证明与背景(证明要有图) 费马点的证明如图,在△ABC中,P为其中任意一点。连接AP,BP,得到△ABP。合并图册合并图册(2张)以 点B为旋转中心,将△ABP逆时针旋转 60°,得到△EBD旋转60°,且BD=BP,DBP 为一个等边三角形PB=PD因此,PA+PB+PC=DE+PD+PC由此可知当E、D、P、C 四点共线时,为PA+PB+PC最小若E、D、P共线时,等边△DBPEDB=120°同理,若D、P、C共线时,则∠CPB=120°P点为满足∠APB=∠BPC=∠APC=120° 的点。历史背景皮耶·德·费马(Pierre de Fermat)是一个17世纪的法国律师,也是一位业余数学家。之所以称业余,是由于皮耶·德·费马具有律师的全职工作。他的姓氏根据法文与英文实际发音也常译为“费尔玛”(注意“玛”字)。费马最后定理在中国习惯称为费马大定理,西方数学界原名“最后”的意思是:其它猜想都证实了,这是最后一个。著名的数学史学家贝尔(E.T.Bell)在20世纪初所撰写的著作中,称皮耶·德·费马为”业余数学家之王。贝尔深信,费马比皮耶·德·费马同时代的大多数专业数学家更有成就,然而皮耶·德·费马并未在其他方面另有成就,本人也渐渐退出人们的视野,考虑到17世纪是杰出数学家活跃的世纪,因而贝尔认为费马是17世纪数学家中最多产的。

#数学猜想#费马原理#数学#数学家#费马大定理

随机阅读

qrcode
访问手机版