椭圆函数的分类 在以上性质的规2113范下,有两大类重要5261的椭圆函数:①魏尔斯特拉4102斯-δ函数。它表作1653f(z)=∑`1/(z-ω)^2,其中ω=2nω1+2mω2,∑`表n,m取遍全部整数之和,但要除去ω=0的情形。这是一个二阶椭圆函数,在周期平行四边形中,仅有一个ω是二阶极点,ω=δ(z)满足微分方程(ω′)2=4ω3-g2ω-g3,其中g2=60Σ'Image:椭圆函数3.jpgg3=140Σ'Image:椭圆函数4.jpg,由此可见ω=δ(z)是Image:椭圆函数5.jpg的反函数,右边的积分称为椭圆积分。可以证明,所有的椭圆函数都可以用δ(z)函数来表示,而每一个椭圆函数都一定满足一个常系数一阶的代数微分方程。②雅可比椭圆函数。它定义为椭圆积分的反函数,记作ω=J(z),J(z)的基本周期平行四边形是一个矩形,其基本周期是4K与2iK′,此处Image:椭圆函数7.jpg,Image:椭圆函数8.jpg,其二阶极点为iK′,而k是一个实常数。
椭圆函数是什么函数
椭圆函数是什么