群论在固体物理中的具体应用有哪些 物理上一般用群论描述对称性。保有系统对称性的操作的集合构成群。由群的性质能衍生出部分系统的性质。最简单的,经典力学里就有的,系统的时间平移不变性带来能量守恒,空间平移不变性带来动量守恒等等。深入一点的话,在量子力学里,群即系统的对称性表示为在相似变换下保持哈密顿量不变的算符,由此可以给出系统能带的性质,包括简并性,由此可以简化计算;这方面最重要的应用就是分子能谱的计算,固体物理中的Bloch定理以及能带计算的简化,都是空间群的应用。我不懂化学,但我估计化学只是在上面说到的计算中应用群论。物理里群论还有更深入的应用。描述相对论粒子运动的Dirac方程几乎可以说是洛仑兹群的有限维群表示的结果。再深入到粒子物理的层面,标准模型的基础就是规范群(这个我不懂)。
自学《群论》从哪本书入手比较好? 群论属于抽象代数的内容,它本身是一个相对独立的概念,与微积分或高等数学联系不大。基本不需要太深的预备知识,如果非要列举的话,需要一些最最基础的数论知识就够了,中学级别的就足够用了。然而,虽然“群”这个概念本身很简单,但是它包含的思想很深刻,如果不是对数学有比较高的认知水平,即使能明白书上写的东西,也未必能理解它为什么这么写。群论主要在物理学中应用很广,它是描述对称的一门工具。在很多其他数学分支,比如代数拓扑等,也有着很基础的作用。抽象代数也叫近世代数,而二者是同一门学科,有的学校课程名称叫抽象代数,有的叫近世代数,教材也是如此,下面我从简单到难推荐几本。这部书应该是国内较早的一本抽象代数教材,是北师大老一辈的教授张禾瑞编写的,篇幅较短,难度较浅,非常适合于初学者。这本书的优点是例子比较多,因为抽象代数是比较抽象的概念,需要结合具体实例才能理解的比较透彻,这本书里面就结合了很多数论方面的例子进行讲解,使读者能够很快地进入群论的世界。刘绍学的这本近世代数就属于难度较高的了,讲了很多深刻的理论,并且有不少应用的举例。如果想对群论这个东西学得比较好的话,推荐这本教材。这本书是北大的抽象代数教材。
如何理解群论以及群论有什么比较典型易懂的应用? 题主在没有认真学的双学位离散数学中,还有量子力学用到的旋转生成群,还有本学期的广义相对论的微分几何…
群论在固体物理中有哪些具体应用?或者说对固体物理的研究上有什么作用?
群论在物理学中的哪些部分有应用
群论在数学分析中的应用? 谢邀,其实在分析中有一个分支里群本身就是研究的重点:群上的傅立叶分析。rudin其实除了有名的三本分析…
群论在数学分析中的应用? 最近刚学到群论,了解了一些群论在常微分方程、拓扑学中的应用,但总感觉群论在数学分析中的应用较少,想…
群论有什么用啊? 群论,是数学概念。在数学和抽象代数中,群论研究名为群的代数结构。群在抽象代数中具有基本的重要地位:许多代数结构,包括环、域和模等可以看作是在群的基础上添加新的运算和公理而形成的。群的概念在数学的许多分支都有出现,而且群论的研究方法也对抽象代数的其它分支有重要影响。群论的重要性还体现在物理学和化学的研究中,因为许多不同的物理结构,如晶体结构和氢原子结构可以用群论方法来进行建模。于是群论和相关的群表示论在物理学和化学中有大量的应用。扩展资料:群的概念引发自多项式方程的研究,由埃瓦里斯特·伽罗瓦在18世纪30年代开创。在得到来自其他领域如数论和几何学的贡献之后,群概念在1870年左右形成并牢固建立。现代群论是非常活跃的数学学科,它以自己的方式研究群。为了探索群,数学家发明了各种概念来把群分解成更小的、更好理解的部分,比如置换群、子群、商群和单群等。参考资料来源:-抽象代数参考资料来源:-群论
群论在数学分析中的应用? 1:群论和数学分析都建立在集合的基础上,群论讨论一般性的集合,数学分析讨论实数集合。群论赋予集合一般.
近似代数中的群论和计算机软件方面有些什么联系?或者通过怎样把他们联系起来? 群论只是基础知识,软件方面的数据结构与算法应该和群论有一些关系,而数据结构与算法是学习软件的基本功。有群论的思维后学习软件也会觉得轻松一些,我觉得学习群论主要是对逻辑思维的锻炼。