质点系的角动量定理与质心系的角动量定理的区别? 角动量[jiǎo dòng liàng]角动量(angular momentum)在物理学中是和物体到原点的位移和动量相关的物理量。它表征质点矢径扫过面积的速度大小,或刚体定轴转动的剧烈程度[1]。中文名角动量外文名angular momentum类别物理量
物理:为什么质点系的角动量定理中如果质心在非惯性系原点就必须选质心 不太明白你的意思,但如果质心不再旋转轴上的话,要用平行轴定理,求出其的转动惯量,而平行轴定理,需要知道质心到旋转轴的距离。
质点系的角动量是不是等于质心的角动量 表述角动量与力矩之间关系的定理。对于质点,角动量定理可表述为:质点对固定点的角动量对时间的微商,等于作用于该质点上的力对该点来的力矩。对于质点系,根据牛顿第三定律,质点系内各质点间的相互作用的内力是成对出现的,服从作用和自反作用定律,因而质点系的内力对任一点的主矩为零。利用内力的这一特性,即可导出质点系的角百动量定理:质点系对任一固定点 O的角动量对时间的微商等于作用于该质点系的外力系对O点的主矩Mo,即,式中ri、mi和vi分别为质点系中第m个质点关于O点的矢径、质量和速度矢量。这度一定理中的 O点必须固定。在一般情况下,对于动点,这个定理不成立;但质点系的质心例外,关于质心的角动量定理为:质点系对于质心C的角动量为,它对时间的微商等于作用在质问点系的外力系对质心C的主矩Mσ,即式中r媴为质点系中第i个质点对质心的矢径。由角动量定答理可知,描述质点系整体转动特性的角动量只与作用于质点系的外力有关,内力不能改变质点系的整体转动运动。
质点系的动量为零,则质点系的角动量也为零. 楼上网友的回答,后面答非所问,非常牵强附会。楼主的问题是:质点系的动量为零,则质点系的角动量也为零。是对还是错?答:错!简洁解释:1、质点系的动量为0,但质点系的角动量不一定为0。它们可以做类似于太阳系这样的公转加自转的运动。2、质点系的角动量为0时,质点系的动量也不一定为0.它们可以做类似于一颗流星划过天空的平动运动。细致解释:1、动量守恒的前提是:系统受到的合外力为0。A、在这样的前提之下,不能排除系统受到力偶couple的影响。B、在力偶的作用下,系统的整体动量不变,整体的e799bee5baa6e997aee7ad94e58685e5aeb931333337396332速度不变,也就是质心的速度不变,质心的动量不变。但是整体的角动量在增加。也就是说,整体的转动速度会越来越快。2、角动量守恒的前提是:系统受到的合外力矩为0。A、在这样的前提下,不能排除系统整体上受到一个合外力的作用,而仅仅只是合外力的力矩为0。B、合外力作用在质心上,系统虽未转动加速,但却平动加速了,此时动量守恒,而角动量却守恒。动量守恒=momentum conservation;角动量守恒=angular momentum conservation;合外力=resultant forc;合外力矩=resultant moment。请参看下面的。
物理:为什么质点系的角动量定理中如果质心在非惯性系原点就必须选质心 不太明白你的意思,但如果质心不再旋转轴上的话,要用平行轴定理,求出其的转动惯量,而平行轴定理。
什么是角动量定理?
内力()质点系的角动量定理.
一个系统角动量守恒的条件是什么? 对一固定点2113o,一个系统所受的合外5261力矩为零,则此质点的角动量4102矢量保持不变1653,即为一个系统角动量守恒的条件。物理学的普遍定律之一。反映质点和质点系围绕一点或一轴运动的普遍规律。如果合外力矩零(即M外=0),则L1=L2,即L=常矢量。这就是说,对一固定点o,质点所受的合外力矩为零,则此质点的角动量矢量保持不变。这一结论叫做质点角动量守恒定律。角动量与转动惯量的关系:对于定轴转动的刚体,在常见的情况下,是转动惯量(SI 单位为),是角速度(矢量)(SI 单位为)。角动量守恒定律:角动量守恒定律称,在不受外力矩作用时,体系的总角动量不变。注意角动量守恒是矢量守恒,这代表其三个分量都不随时间而变化。角动量定理:体系受到外力矩作用时,有这就是角动量定理。在外力矩一定的情况下,也可写成。扩展资料:角动量是矢量,它在通过O 点的某一轴上的投影就是质点对该轴的角动量(标量)。质点系或刚体对某点(或某轴)的角动量等于其中各质点的动量对该点(或该轴)之矩的矢量(或代数)和。角动量的几何意义是矢径扫过的面积速度的二倍乘以质量。角动量守恒定律指出在合外力矩为零时,物体与中心点的连线单位时间扫过的面积不变,在天体运动中。
物理,求角动量定理公式? 角动量定理公式:其中,r表示以质点到旋转中心(轴心)的距离(标量值可以理解为半径的大小),方向由原点指向物体位置的矢量(即矢径),L 表示角动量,v表示线速度,P表示。