随机变量的数学期望 楼主的这个结论明显是得不出来的.如果随机变量XY相互独立,那么有:EXY=EXEY XY相互独立,那么它们的相关系数:ρ=0 ρ=Cov(X,Y)/√(DXDY)=0 协方差
1、设随机变量X~U(1,3),则1/X的数学期望为 () 答案是1/2ln3 1题U(1,3),即X在1到3之间的概率密度是1/2,在其它点是0E(1/X)=(1/X)*1/2在1到3的定积分=原函数(1/2)lnx上限3下限1=(1/2)ln3-(1/2)ln1=(1/2)ln32题D(3X-2Y)=D(3X)+D(2Y)-2p*根号D(3X)*根号D(2Y)9D(X)+4D(Y)-12p*根号D(X)*根号D(Y)9*4+4*9-12*0.6*2*3=28.8
正态分布的数学期望 E(x^4)x^4*1/√(2π)e^(-x^2/2)dx 积分区间(-∞,+∞)2∫x^4*1/√(2π)e^(-x^2/2)dx 积分区间(0,+∞)分步积分.2x^3*1/√(2π)e^(-x^2/2)+2/√(2π)∫3x^2*e^(-x^2/2)dx2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2/√(2π)∫3*e^(-x^2/2)dx积分区间(0,+∞)1/√(2π)∫e^(-x^2/2)dx=1/22/√(2π)∫3*e^(-x^2/2)dx=3*2*1/2=3而2x^3*1/√(2π)e^(-x^2/2)-2/√(2π)3x*e^(-x^2/2)2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)利用罗必塔法则,lim2x^3/√(2π)e^(x^2/2)-6x/√(2π)*e^(x^2/2)=0所以E(x^4)=3
概率论中的一道求正态分布的数学期望的题目 楼主的题目还是有问题,此题应该加上 X,Y相互独立的条件.你可以先求出Z的密度再来求期望,但会比较麻烦.相信楼主手里的教材上一定有这样一道题目的在本题相同的条件下求W=max(X,Y)的期望,答案为:1/根号下\\Pi;在此基础上可以有一个简单做法解楼主的问题:由X,Y相互独立且均服从标准正态分布,可以推出:X,—Y相互独立且也是均服从标准正态分布,而min(X,Y)=—max(—X,—Y),所以Emin(X,Y)=—Emax(—X,—Y)=—1/根号下\\Pi.
正态分布数学期望问题(含绝对值) x0时在0到正无穷的积分,X服从标准正态分布这是确定的,不会因为你用它干什么而变化变.所以μ和σ是不会变化的.
概率论与数理统计 数学期望 E(X∧2)怎么求 若X是离散2113型的,则E(X^2)=∑((xi)^2)pi。若X是连续5261型的,则E(X^2)=(x^2)f(x)在-∞到+∞的定积分。期望4102值并不一定等同于常识中的“1653期望”—“期望值”也许与每一个结果都不相等。期望值是该变量输出值的平均数。期望值并不一定包含于变量的输出值集合里。大数定律规定,随着重复次数接近无穷大,数值的算术平均值几乎肯定地收敛于期望值。扩展资料:设随机事件A在n次重复试验中发生的次数为nA,若当试验次数n很大时,频率nA/n稳定地在某一数值p的附近摆动,且随着试验次数n的增加,其摆动的幅度越来越小,则称数p为随机事件A的概率,记为P(A)=p。如果随机变量只取得有限个值或无穷能按一定次序一一列出,其值域为一个或若干个有限或无限区间,这样的随机变量称为离散型随机变量。事件的概率是衡量该事件发生的可能性的量度。虽然在一次随机试验中某个事件的发生是带有偶然性的,但那些可在相同条件下大量重复的随机试验却往往呈现出明显的数量规律。参考资料来源:—数学期望
数学期望EX与E|X|的区别. 因为Ex=xf(x)在负无穷到0上的积分为负(x0),在0到正无穷上为正(x>;0,f(x)>;0)在负无穷和正无穷的积分值的绝对值相同,符号相反,所以积分后的和即在负无穷到正无穷上的积分E(X)为0,而E|x|=|x|f(x)在负无穷到正无穷上的.
数理统计中求数学期望、协方差和相关系数, 已知随机变量X~N(1,3^2),N(0,4^2).且X和Y的相关系数ρxy=-1/2,设Z=X/3+Y/2,求:(1)E(Z),D(Z),ρxz.(2)问X与Y是否相互独立?(1)由已知随机变量X~N(1,3^2),N(0,4^2)得E[X]=1 E[Y]=0;又Z=X/3+Y/2得E(Z)=(1/3)E(X)+(1/2)E(Y)=1/3;ρxy=-1/2得到 σ[X]*σ[Y]=-2*Cov[X,Y]得到 Cov[X,Y]=-1/2*σ[X]*σ[Y]=-1/2*3*4=-6亦COV(X,Y)=Pxy*(D(X)D(Y))^0.5=(-0.5)*3*4=-6D(Z)=(1/9)D(X)+(1/4)D(X)+(2/6)COV(X,Y)=3(2)X与Y不独立如果X,Y独立,那么COV(X,Y)=0,本题不为0,所以X,Y不独立