采样系统结构如图所示,求该系统的脉冲传递函数。 该系统可用简便计算方法求出脉冲传递函数。去掉采样开关后的连续系统输出表达式为 ;nbsp;nbsp;nbsp;对闭环系统的输出信号加脉冲采样得 ;nbsp;nbsp;nbsp;再对上式。
计算机控制技术 试题 没有答案
一个理想采样及恢复系统如题图1-13(a)所示,采样频率为Ωs=8π,采样后经如题图1-13(b)所示的理想低通G(jΩ)还原 nbsp;nbsp;nbsp;nbsp;cos(5π·n·0.25)]δ(t-0.25n) ;nbsp;输入信号xa(t)=cos2πt+cos5πt,其频谱图如图1-14(a)所示。nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;采样。
采样系统如图7-4所示,采样周期为T,试求该采样系统的输出C(z)表达式。 由系统结构图 ;nbsp;C(z)=RG2G5(z)+E(z)G3G4G5(z) ;nbsp;E(z)=RG1(z)-C(z) ;nbsp;C(z)=RG2G5(z)+G3G4G5(z)[RG1(z)-C(z)] ;nbsp;所以 ;nbsp;
英语翻译 Spectrum transform the process shown in Figure 3,F said that analogue frequency,the actual frequency signal,digital frequency f said that the sampling frequency of the normalized frequency.The center frequency of 70 MHz,10 MHz bandwidth of the analog signal(Figure 3(a)below)sampling frequency of 80 MHz,amplitude and frequency characteristics are Figure 3(b)shows the signal,the signal from the sampling signal prior to 80 MHz be a cycle extension,the map was drawn spectrum of the signal cycle.Figure 3(c)of the digital downconversion charted after the signal,the left 10 MHz frequency spectrum.The low-pass filter after only reservation near zero-frequency signals in Figure 3(d)shows.To ensure the signal from four times after Aliasing-Free,Low-pass filter must be installed digital bandwidth of 1/16.4 times the signal from Figure 3(e)shown,we can see that the figures signal a wide spectrum four times.Noting the sampling of the signal,the signal is frequency-domain spectrum in reverse,the 。
采样系统方框图如图所示,采样周期T=1s,试求使系统稳定的K值范围。 0<K<2.393
求一道数字信号处理题的完整答案,已知 Xa(t)的傅立叶变换(频谱)如下图所示,对 Xa(t)进行等间隔采样而得到x(n) ,采样频率fs=3KHZ .(1)\\x05试画出 的傅立叶变换 的图形;(2)\\x05问采样信号 x(n)通过 一个增益和截止频率各为多少的理想滤波器,可以无失真地恢复出原来的模拟信号?
已知采样系统结构如图7-7所示,采样周期T=0.1s。试求闭环系统稳定时K的取值范围。 由图可知 ;nbsp;nbsp;nbsp;z变换为 ;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;系统开环脉冲传递函数 ;nbsp;G(z)=G1(z)G2(z) ;nbsp;nbsp;nbsp;代入T=。
已知采样系统如图7-16所示,其中T=1s,K=1, 试求: (1)闭环脉冲传递函数。 (2)判断系统是否稳定。 (3)写出描 (1)求出Φ(z)。nbsp;nbsp;nbsp;nbsp;nbsp;nbsp;闭环脉冲传递函数为 ;nbsp;nbsp;(2)判断系统的稳定性。nbsp;nbsp;系统闭环特征方程为 ;D(z)=z2-z+0.632=0 ;nbsp。