ZKX's LAB

正态分布的数学期望推导 数学正态分布和均匀分布问题!

2020-07-19知识19

二维正态分布 似乎得先弄明白什么叫\"二维分布的期望\". 。二维正态分布的的期望是什么?是相关系数吗?怎么推导?查看问题描述 ? 3 知乎用户 展开阅读全文 ? 。数学正态分布和均匀分布问题。 正态分布N(μ,σ^2)期望即μ,方差即σ^2区间[a,b]上均匀分布 期望为(a+b)/2,方差为(b-a)^2/12正态分布的数学期望推导过程!希望拍照啊! 第三行是拆开以后第一项奇0得到的正态分布的期望的推导过程? 因为积分区间(-∞,+∞)1/√(2π)∫e^(x^2/2)dx=1所以最后就等于μ了求正态分布的数学期望和方差的推导过程 不用二重积分的,可以有简单的办法的。设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,不太好打公式,你将就看一下。于是:e^[-(x-u)^2/2(t^2)]dx=(√2π)t。(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了。(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u。(2)方差过程和求均值是差不多的,我就稍微略写一点了。对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证。如何证明服从标准正态分布函数的X,数学期望E(X^4)=3呢? 在《概率论与数理统计》浙江大学第四版第139页,直接给出值为3,用来推导卡方分布。

#概率论#方差公式#dx#简单相关系数#正态分布

随机阅读

qrcode
访问手机版