二叉树求指定结点到根结点的路径怎样用C++语言描述。。。。? bool printPath(TreeNode*root,int data){if(root=NULL)return false;if(root->;data=data|printPath(root->;left)|printPath(root->;right)){cout<;<;root->;data;路径上的结点标识打印出来return true;}return false;}
计算机科学中的「前缀树(Trie)」是什么,优缺点是哪些,有什么应用场景? Trie树Trie这个名字取自“retrieval”,检索,因为Trie可以只用一个前缀便可以在一部字典中找到想要的单…
C语言 求二叉树根节点到叶子节点的路径 它的算法思想应该是1,以一指针指向该叶子结点并向上(父结点)找,把父节点入栈(方便输出路径)2,把指针指向父节点,重复上面的过程,直到节点的父节点为空3,依次出栈输出信息,路径就出来了(注:此二叉树的节点应包括父指针,左右指针,数据域)就这么多吧!要学习程序,就得自己尝试写,写多了就会了还有什么不懂的可以给我留言!
在二叉树中找出和为某一值的所有路径 对给定的任意一颗单向二叉树,所有节点数据域存放的是不同的且 includeincludetypedef struct{int data;struct Node*left;struct Node*right;}Node;int s(int*a,int len)/求和函数{int i=0,sum=0;for;i;i+)sum+a[i];return sum;}int search(Node*node,int sum,int*now,int len)/递归搜索{int i=0,t1=0,t2=0;if(node->;left=NULL&node->;right=NULL){now[len+]=node->;data;if(s(now,len)=sum){FILE*fout=fopen(\"output.txt\",\"a+\");for(i=0;i;i+)fprintf(fout,\"%d\",now[i]);fprintf(fout,\"\\n\");fclose(fout);return 1;}else return 0;}else {now[len]=node->;data;if(node->;left。NULL)t1=search(node->;left,sum,now,len+1);if(node->;right。NULL)t2=search(node->;right,sum,now,len+1);return t1|t2;}}int main(){int sum,num_node,root,lchild,rchild,front=0,back=0,temp,len=0;Node*node;int*now;FILE*fin=fopen(\"input.txt\",\"r\");FILE*fout;fscanf(fin,\"%d%d\",&sum,&num_node);now=malloc(sizeof(int)*num_node);node=(Node*)malloc(sizeof(Node)*num_node);while(fscanf(fin,\"%d%d%d\",&root,&lchild,&rchild)。EOF){if(front=0)node[back+].data=root;if(node[front].data。root){fout=fopen(\"output.txt\",\"w\");。
这个二叉树输出根结点到某个结点路径的程序哪里错了?C++ #includeusing namespace std;struct bnode{char data;bnode*lchild;bnode*rchild;bnode*father;};struct node{char data;node*next;};class Bitree{public:bnode*preorder(bnode*root,char z);bnode*root;};bnode*Bitree:preorder(bnode*root,char z){bnode*p;if(root。NULL){if(root->;data=z){return root;}if(p=preorder(root->;lchild,z))return p;if(p=preorder(root->;rchild,z))return p;}return NULL;}class Lstack{public:Lstack();Lstack();bool empty();bool full();void get_top();void push(char x);void pop();node*top;int count;};Lstack:Lstack(){count=0;top=NULL;}bool Lstack:empty(){if(count=0)return true;return false;}void Lstack:get_top(){if(empty()){cout;}else{cout<;<;top->;data;}}void Lstack:push(char x){node*s;s=new node;s->;data=x;s->;next=top;top=s;count+;}void Lstack:pop(){if(empty())cout;node*u;u=top;top=top->;next;delete u;count-;}Lstack:~Lstack(){while。empty())pop();}void create(bnode*&root){char x[2];cin>;>;x;if(x[0]='.')root=NULL;else{root=new bnode;。