t检验的原理是什么?有什么意义? 原理2113:T检验是用t分布理论来推论差5261异发生的概率,从而比较两个平均数的差异是否4102显著。它与f检验、1653卡方检验并列。意义:单样本检验:检验一个正态分布的总体的均值是否在满足零假设的值之内。双样本检验:其零假设为两个正态分布的总体的均值是相同的。这一检验通常被称为学生t检验。但更为严格地说,只有两个总体的方差是相等的情况下,才称为学生t检验;否则,有时被称为Welch检验。检验同一统计量的两次测量值之间的差异是否为零。举例来说,我们测量一位病人接受治疗前和治疗后的肿瘤尺寸大小。如果治疗是有效的,我们可以推定多数病人接受治疗后,肿瘤尺寸变小了。这种检验一般被称作“配对”或者“重复测量”t检验。检验一条回归线的斜率是否显著不为零。扩展资料假设检验的结论不能绝对化。当一个统计量的值落在临界域内,这个统计量是统计上显著的,这时拒绝虚拟假设。当一个统计量的值落在接受域中,这个检验是统计上不显著的,这是不拒绝虚拟假设H0。因为,其不显著结果的原因有可能是样本数量不够拒绝H0,有可能犯第Ⅰ类错误。正确理解P值与差别有无统计学意义。P越小,不是说明实际差别越大,而是说越有理由拒绝H0,越有理由说明两者有。
spss教程:单因素方差分析
统计学怎样用方差分析方法检验有无显著差异性 单因素方差2113分析方差分析前提:不同水平下,5261各总体均值4102服从方差1653相同的正态分布。方差齐性检验:采用方差同质性检验方法(Homogeneity of variance)在spss中打开你要处理的数据,在菜单栏上执行:analyse-compare means-one-way anova,打开单因素方差分析对话框在这个对话框中,将因变量放到dependent list中,将自变量放到factor中,点击post hoc,选择snk和lsd,返回确认ok统计专业研究生工作室原创,请勿复杂粘贴
2×2四格表资料进行率的比较的时候都有哪些检验方法?各自的条件是什么 医学论文中常用统计分析方法的合理选择目前,不少医学论文中的统计分析存在较多的问题。有报道,经两位专家审稿认为可以发表的稿件中,其统计学误用率为90%-95%。为帮助广大医务工作者提高统计分析水平,本文将介绍医学论文中常用统计分析方法的选择原则及应用过程中的注意事项。1.t 检验t检验是英国统计学家W.S.Gosset 1908年根据t分布原理建立起来的一种假设检验方法,常用于计量资料中两个小样本均数的比较。理论上,t检验的应用条件是要求样本来自正态分布的总体,两样本均数比较时,还要求两总体方差相等。但在实际工作中,与上述条件略有偏离,只要其分布为单峰且近似正态分布,也可应用[2]。常用的t检验有如下e68a84e799bee5baa6e79fa5e9819331333363366263三类:①单个样本t检验:用于推断样本均数代表的总体均数和已知总体均数有无显著性差别。当样本例数较少(n)且总体标准差未知时,选用t检验;反之当样本例数较多或样本例数较少、总体标准差已知时,则可选用u检验[3]。②配对样本t检验:适用于配对设计的两样本均数的比较,在选用时应注意两样本是否为配对设计资料。常用的配对设计资料主要有如下三种情况:两种同质受试对象分别接受两种不同的处理;同。
什么是统计检验?怎么选择统计检验方法? 统计检验亦称“假62616964757a686964616fe58685e5aeb931333431363061设检验”。根据抽样结果,在一定可靠性程度上对一个或多个总体分布的原假设作出拒绝还是不拒绝(予以接受)结论的程序。决定常取决于样本统计量的数值与所假设的总体参数是否有显著差异。这时称差异显著性检验。检验的推理逻辑为具有概率性质的反证法。选择显著性水平和否定域有了与问题相关的抽样分布,我们便可以把所有可能的结果分成两类:一类是不大可能的结果;另一类人们预料这些结果很可能发生。既然如此,如果我们在一次实际抽样中得到的结果恰好属于第一类,我们就有理由对概率分布的前提假设产生怀疑。在统计检验中,这些不大可能的结果称为否定域。如果这类结果真的发生了,我们将否定假设;反之就不否定假设。概率分布的具体形式是由假设决定的,假设肯定不止一个。在统计检验中,通常把被检验的那个假设称为零假设(或称原假设,用符号H0表示),并用它和其他备择假设(用符号H1表示)相对比。值得注意的是,假设只能被检验,从来不能加以证明。统计检验可以帮助我们否定一个假设,却不能帮助我们肯定一个假设。为了使检验更严格、更科学,还需要更多的东西。首先,我们必须确定冒犯第。
t检验的原理是什么?有什么意义?谢谢 原理:T检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。它与f检验、卡方检验并列。意义:T检验对数据的正态性有一定的耐受能力。。
实验设计的基本类型? 常用的心理实验设计有几种基本类型,而这些类型常常是被综合使用的。单组设计与对比设计根据是否设置控制组(对照组)划分的两种基本设计类型。①单组设计。在所选被试编组时不设置控制组,其基本模式是前测-处理-后测,通过前后两次测量的差异检验实验处理的效果。统计结果一般采用t检验法。单独使用这种类型的实验设计已不多见。因为在前测与后测中间有许多因素,如成熟、前测对后测的影响、测量工具的变形、情境的改变等,与实验处理的效果相混淆,从而降低实验的内在效度。②对比设计。这是心理实验最基本的设计之一。它把被试分为两组,一组为实验组,施以实验处理(也称处理);另一组为控制组,不加实验处理。为使两组被试尽量同质,便于比较,一般采用随机分派法分组,通过测量两组的差异检验实验处理的效果。其基本模式如Ⅰ。即使随机分派被试,但样本不很大时也很难保证两组在处理前同质,因而两组测量的差异不一定全是处理的结果。为了弥补这一不足,常在处理前先对两组进行测量,即模式Ⅱ。如果前测的结果相近,可直接比较两组的后测,并用t检验法检验其差异,这时的差异即可认为完全是由处理造成的。如果两个前测不同,就要把前测作为共变量,进行独立样本单因素的。