什么是费马定理 费马大定理(Fermat's last theorem)现代表述为:当n>2时,方程xn+yn=zn没有正整数解。费马大定理的提出涉及到两位相隔1400年的数学家,一位是古希腊的丢番图,一位是法国的费马。丢番图活动于公元250年左右,他以著作《算术》闻名于世,不定方程研究是他的主要成就之一。他求解了他这样表述的不定方程(《算术》第2卷第8题):将一个已知的平方数分为两个平方数。(1)现在人们常把这一表述视为求出不定方程x2+y2=z2(2)的正整数解。因而,现在一般地,对于整系数的不定方程,如果只要求整数解,就把这类方程称为丢番图方程。有时把不定方程称为丢番图方程。关于二次不定方程(1)的求解问题解决后,一个自然的想法是问未知数指数增大时会怎么样。费马提出了这一数学问题。费马生前很少发表作品,一些数学成果常写在他给朋友的信中,有的见解就写在所读的书页的空白处。他去世后,才由后人收集整理出版。1637年前后,费马在读巴歇校订注释的丢番图的《算术》第2卷第8题,即前引表述(1)时,在书的空白处写道:“另一方面,将一个立方数分成两个立方数,一个四次幂分为两个四次幂,或者一般地将一个高于二次的幂分为两个同次的幂,这是不可能的。关于。
为什么费马大定理在数学史上的地位如此重要? 费马大定理在数学史上有这么大名气,有几个原因。第一,它的表述很简单,有初中甚至小学高年级数学水平的人都能看懂。“当整数n>;2时,关于x,y,z的方程 x^n+y^n=z^n 没有正整数解。你看,多简单。但要证明它,要用到多少高深到我们无法想象的数学知识和手段,要把多少个我们无法理解的数学领域连接起来。这就是表面的简洁和内涵的复杂最完美的统一。像数学史别的也很有名的猜想,比如ABC猜想、庞加莱猜想,连把猜想本身是什么意思讲清楚,都要用一本书,讲完我们还是一头雾水听不懂,注定不会在大众文化里有这么高的知名度。第二,它的故事很传奇。费马声称自己做出了证明,却因为证明太长,在书页边上写不下而没有留下来,这本身就是一个好故事,拥有广泛传播的品质。而后来安德鲁·怀尔斯搞地下工作一般苦心孤诣地试图独立做出证明,更加为它增添几分传奇。第三,它本身的数学意义就很重要。哥德巴赫猜想也许是可以和费马大定理相提并论的另一个好例子。哥德巴赫猜想的表述也很简单,可能比费马大定理还简单,所以哥德巴赫猜想在大众之中名气也很大。但是说实话,哥德巴赫猜想的数学意义比费马大定理差远了,它很孤立,不像费马大定理那样把几百年前的猜想和最先进的数学思想。
光是如何知道哪条路线最快的,费马原理是不是违背常理呢? 好问题,我思考过一模一样的问题。但是恕我不能用无数学的文字描述结论,我先尝试简单说一说吧。最小作用…
为什么费马大定理表述起来这么简单,证明却这么复杂? 费马宣称自己证明了但在书边写不下证明过程的那个猜想,后来变成了费马大定理。三百多年来,费马大定理的…
迄今为止,人类最伟大的前10位数学家分别是谁? 答:很多数学家在数学领域的贡献是多方面的,根本没有一个准确的排行,如果一定要给出一个排行,那么会带有个人偏见。艾伯菌我就以个人对数学历史的了解,给出一个大致的梯队排行,仅供参考:第一梯队欧拉、高斯、牛顿、黎曼这四位都是神级梯队的数学家,随便哪一个的贡献都是极其重要的,而且他们的贡献不止于数学领域,在物理和其他领域也有着重要贡献。比如莱布尼茨和牛顿都同时发明了微积分,但是莱布尼茨的名声就没有牛顿大,虽然莱布尼茨发明的微积分比牛顿的更实用,但论其影响力就比不上牛顿了。而欧拉和高斯,在基础数学领域的贡献都是无与伦比的,而且两人不相上下,现在科学领域随处可见欧拉和高斯的贡献,比如欧拉方程、欧拉常数、高斯分布、高斯定律等等。而黎曼在高等数学领域的贡献,给众多学科铺平了道路,比如黎曼几何,就给相对论提供了数学基础;而黎曼积分、黎曼流形、黎曼条件等等概念,在高等数学领域随处可见。第二梯队欧几里得、阿基米德、彭加莱、希尔伯特、莱布尼茨、陈省身、康托尔、伽罗瓦、柯西、笛卡尔、冯·诺依曼拉格朗日等等。能排到第二梯队的数学家很多,他们其中一些对基础数学有着开创性贡献,比如欧几里得和阿基米德;另外一些在各自。
数学中,几何和代数的本质区别和联系是什么?
费马大定理提出以后出现的七门数学学科是什么 分别为四色定理2113、构造无穷多个两两相连区域、5261图论4102与数论联系、筛子与哥德巴赫猜想等内容。1653当我们用霍奇猜想的方法制造几何拓扑超级结构时会发生一种歧管,这个歧管的整体就是费马大定理,计算这个结构局部就要用黎曼猜想。法兰西斯·古德里于1852年提出的猜想,只需要四种颜色为地图着色,构造方法就是霍奇猜想。把歧管两两相连之间给定距离可以等价转换成为货郎担问题。在数论中,最重要的元素就是素数,欧几里得证明了有无穷多个素数,并且它们有一个特点就是两两互素。岐管筛子把偶数往里面扔,哥德巴赫猜想说大于4的偶数一个也不会漏出筛子,除了6=3+3以外,其他偶数都是可以在不同的素数区域被拦截。随意在岐管上画出一条线,都需要黎曼猜想计算。计算虚部需要欧拉公式。物理学里,真空是能量的“零点”。黎曼猜想与物理学和费马大定理联系起来了。几何拓扑进展是创造代数或者数论的源泉,创造一个新代数结构必须为它找到几何新结构。扩展资料:费马大定理的相关内容:1、十九世纪初法国自学成才的女数学家热尔曼证明了当n和2n+1都是素数时费马大定理的反例x,y,z至少有一个是n整倍数。在此基础上,1825年德国数学家狄利克雷和法国数学家。