高等代数 就是 高等数学 吗?有什么区别?高等代数是高等数学的一部分 初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及。
初中数学的主要内容有什么?
什么是对称性?
已打乱的三阶魔方的最简复原步骤? 已经打乱了的三阶魔方肯定有非常多方法和步骤来还原,但最简单要几步呢,由此引申出,对于打乱最复杂的魔…
如何直观地理解群论? 1:很多人提到对称,其实是不对的。群的特征是变换,任何封闭的变换操作集都可以用群表示。物理里用它来表.
诺特定理详解的对称总是完美的 你照着镜子,你与镜子里的影像形成了一种对称关系。对称,不仅是在镜子里出现,在我们身边的大自然里,也随处可见。蜂巢是由一个个正六边形对称排列组合而成的建筑物,每个正六边形大小统一、上下左右距离相等,这种结构最紧密有序,也最节省材料;蝴蝶左右翅膀的结构是对称的,就连翅膀上的图案与颜色也是对称的,因此它能够成为自然界最美丽的昆虫;所有的海螺都拥有奇妙的左右旋对称;人本身也是对称的,而且不止左右结构对称,双眼、双耳和左右脑的形状也是对称的,设想一个人少一只眼、或嘴歪在一边,那一定被认为不是很美的。人类自古以来就对对称美推崇备至,对称的概念几乎已经渗透到所有的学科领域。建筑学中,建筑家们在规划、设计和建造形形色色的建筑时,总是离不开对称,那些流传千古的著名建筑物也大多是极具对称美的,比如中国的故宫、天坛、颐和园的长廊,埃及的大金字塔,罗马的角斗场。几何学中,有圆、椭圆、正方形、矩形、梯形、三角形、圆锥、圆柱等各种对称。代数中,有一元二次方程两个根的对称、方程的对称函数,甚至还有专门关于对称性的数学理论—群论。在晶体学中,对称性表现得尤为突出。其实,自然界中百分之百完全对称的东西极少,但。
如何直观地理解群论?
如何理解「三维准晶可看作高维晶体在三维的投影」?
群论 抽象代数 请问如何证明正方形的对称群的不可约表示有5个? 直接计算D4中类的数目,显然是5个