ZKX's LAB

2800cm处红外吸收光谱 红外光解离光谱与传统红外光谱有哪些区别?

2020-09-30知识13

红外吸收光谱产生的条件是 ( )和( 1)辐射应具有能满足物质产生振动跃迁所需的能量;(2)辐射与物质间有相互偶合作用.\\x0d

2800cm处红外吸收光谱 红外光解离光谱与传统红外光谱有哪些区别?

红外光谱在576cm-1处出现吸收峰为什么官能团振动? C-Br的

2800cm处红外吸收光谱 红外光解离光谱与传统红外光谱有哪些区别?

几种常见气体的红外线吸收光谱图 几种常见来气体的红外吸收光谱图CO吸收红外线光谱范围:4.65um CO2吸收红外线光谱范围:2.7um,4.26um CH4 吸收红外线光谱范围:2.4um 3.3um 7.65um SO2吸收红外线光谱范围:4um 7.45um 8.7um 红外气体分析仪制造原理 利用不同气体对不同波长的红外线具有选择性吸源收的特性。具有不对称结构的双原子或多原子气体分子,在某些波长范围内(1~25um)吸收红外线,具有各自的特征吸收波长。红外线:波长比可见光的波长长1000~0.75um近红外线:15~0.75um 气体分析用红百外线范围:2~25um 不分光(非色散型)红外线分析仪概念:连续光谱的射线,全部投射到被分析的样气上。度 使用红外气体分析仪注意要素 1、一台红外气体分析仪只能分析一种气体,若背景气体中含有与被测气体的特征上吸收峰重迭的部分(干扰组分),要先过滤去除。2、不同气体只吸收某一波长范围或几个波长范围的红外辐射能。

2800cm处红外吸收光谱 红外光解离光谱与传统红外光谱有哪些区别?

怎么看红外光谱图? 1,根据分子式2113计算不饱和度公式:不饱和度 Ω5261=n4+1+(n3-n1)/2 其中:n4:化合价为41024价的原1653子个数,n3:化合价为3价的原子个数,n1:化合价为1价的原子个数。2,分析3300~2800cm-1区域C-H伸缩振动吸收;以3000 cm-1为界:高于3000cm-1为不饱和碳C-H伸缩振动吸收,有可能为烯,炔,芳香化合物;而低于3000cm-1一般为饱和C-H伸缩振动吸收;3,若在稍高于3000cm-1有吸收,则应在 2250~1450cm-1频区,分析不饱和碳碳键的伸缩振动吸收特征峰,其中炔:2200~2100 cm-1,烯:1680~1640 cm-1 芳环:1600,1580,1500,1450 cm-1若已确定为烯或芳香化合物,则应进一步解析指纹区,即1000~650cm-1的频区,以确定取代基个数和位置(顺、反,邻、间、对);4,碳骨架类型确定后,再依据官能团特征吸收,判定化合物的官能团;5,解析时应注意把描述各官能团的相关峰联系起来,以准确判定官能团的存在,如2820,2720和1750~1700cm-1的三个峰,说明醛基的存在。扩展资料:红外光谱是分子能选择性吸收某些波长的红外线,而引起分子中振动能级和转动能级的跃迁,检测红外线被吸收的情况可得到物质的红外吸收光谱,又称分子振动光谱或振转光谱。通常将红外光谱分为三个区域:近红外区。

某种化合物,其红外光谱3000~2800cm-1,1450crn-1,1375cm-1和720cm-1等处有主要吸收带,该化合物是 A A、烷烃

红外光谱的原理当一束具2113有连续波长的红5261外光通过物质,物质分4102子中某个基团的振动频率或转动频率和1653红外光的频率一样时,分子就吸收能量由原来的基态振(转)动能级跃迁到能量较高的振(转)动能级,分子吸收红外辐射后发生振动和转动能级的跃迁,该处波长的光就被物质吸收。所以,红外光谱法实质上是一种根据分子内部原子间的相对振动和分子转动等信息来确定物质分子结构和鉴别化合物的分析方法。将分子吸收红外光的情况用仪器记录下来,就得到红外光谱图。红外光谱图通常用波长(λ)或波数(σ)为横坐标,表示吸收峰的位置,用透光率(T%)或者吸光度(A)为纵坐标,表示吸收强度。当外界电磁波照射分子时,如照射的电磁波的能量与分子的两能级差相等,该频率的电磁波就被该分子吸收,从而引起分子对应能级的跃迁,宏观表现为透射光强度变小。电磁波能量与分子两能级差相等为物质产生红外吸收光谱必须满足条件之一,这决定了吸收峰出现的位置。红外吸收光谱产生的第二个条件是红外光与分子之间有偶合作用,为了满足这个条件,分子振动时其偶极矩必须发生变化。这实际上保证了红外光的能量能传递给分子,这种能量的传递是通过分子振动偶极矩的变化来实现的。。

红外光谱仪中的指纹区域是什么?从该区域的吸收峰可以得到什么信息 中红外区在 红外光谱分析中应用最广,该区又分为官能团区(或称特征频率区,4000~1330cm-1)和 指纹区(1330~400cm-1)。指纹区的 红外吸收光谱很复杂,能反映 分子结构的细微变化。每一种有机化合物在该区谱带的 位置、强度和形状均不相同,如 人的 指纹一样,可用于 认证有机化合物。此外,该区还有一些特征吸收峰,有助于鉴定官能团。在 红外光谱图中1350~400cm-1(8~25μm)的低频率区称为指纹区。这个区域出现的谱带是属于各种单键的伸缩振动和多数基团的弯曲振动(例如C—C,C—N,C—O键等)。这个区域的振动类型复杂而且重叠,特征性差,但对分子结构的变化高度敏感,只要分子结构上有微小的变化,都会引起这部分光谱的明显改变。

红外分光光度计和傅里叶红外光谱仪之间的区别 一、原2113理不同1、红外分光光度计:由光源发出5261的光,被分为能量4102均等对称的两束,一1653束为样品光通过样品,另一束为参考光作为基准。这两束光通过样品室进入光度计后,被扇形镜以一定的频率所调制,形成交变信号,然后两束光和为一束,并交替通过入射狭缝进入单色器中。2、傅里叶红外光谱仪:是基于对干涉后的红外光进行傅里叶变换的原理而开发的红外光谱仪。二、构成不同1、红外分光光度计:探测器将上述交变的信号转换为相应的电信号,经放大器进行电压放大后,转入A/D转换单位,计算机处理后得到从高波数到低波数的红外吸收光谱图。2、傅里叶红外光谱仪:由红外光源、光阑、干涉仪(分束器、动镜、定镜)、样品室、检测器以及各种红外反射镜、激光器、控制电路板和电源组成。三、应用不同1、红外分光光度计:可广泛地应用在石油、化工、医药、环保、教学、材料科学、公安、国防等领域。2、傅里叶红外光谱仪:广泛应用于医药化工、地矿、石油、煤炭、环保、海关、宝石鉴定、刑侦鉴定等领域。参考资料来源:-红外分光光度计参考资料来源:-傅里叶红外光谱仪

#振动频率#吸收光谱#红外光谱#光谱#红外线

随机阅读

qrcode
访问手机版