2阶多自变量偏微分方程的分类除了椭圆,抛物,双曲,请问何为超双曲型和广义抛物型方程,请给出明确的定义.主要说明3自变量的情况即可,
二阶偏微分方程 可将λ视作常数,直接作为常微分方程就解出了
抛物型偏微分方程的抛物方程 。二阶线性偏微分方程(6)在区域Q内称为是抛物型的,如果存在常数α>;0,使得对于任意ξ∈Rn,(x1,x2,…,xn,t)∈Q 有。的形式。(7)称为具有散度形式的抛物型方程,(6)称为非散度形式的抛物型方程。时,(6)与(7)是有区别的,不能互推。如果方程(6)、(7)中的系数和右端还依赖于u,墷u,则(6)和(7)称为拟线性抛物型方程。抛物型方程和椭圆型方程的研究有相似的地方,它们互相影响、互为借鉴。椭圆型方程理论很多结果在抛物型方程中都有相应的定理,例如先验估计、极值原理等。
偏微分方程的分类是否和天体运动的轨迹有关? 没有联系,只是pde的特征方程跟圆锥曲线方程形式相似,才采用了这样的名词。