ZKX's LAB

导体和半导体区别 负电阻率温度特性

2020-09-30知识16

导体和半导体区别 一、概念不同1、导体导体(conductor)是指电阻率很小且易于传导电流的物质。导体中存在大量可自由移动的带电粒子称为载流子。在外电场作用下,载流子作定向运动,形成明显。

导体和半导体区别 负电阻率温度特性

为什么本征半导体的电阻率具有负的温度系数 决定电阻率温度关系的主要因素是载流子浓度和迁移率随温度的变化关系。在低温下,由于载流子浓度指数式增大(施主或受主杂质不断电离),而迁移率也是增大的(电离杂质散射作用减弱之故),所以这时电阻率随着温度的升高而下降。本征半导体特点:电子浓度=空穴浓度(掺杂的半导体,在一定条件下(例如高温下)也可以具有本征半导体特点。扩展资料半导体开始本征激发起重要作用的温度,也就是电阻率很快降低的温度,该温度往往就是所有以pn结作为工作基础的半导体器件的最高工作温度;该温度的高低与半导体的掺杂浓度有关,掺杂浓度越高,因为多数载流子浓度越大,则本征激发起重要作用的温度。半导体热敏电阻和光敏电阻等半导体器件就是根据此原理制成的。常温下本征半导体的电导率较小,载流子浓度对温度变化敏感,所以很难对半导体特性进行控制,因此实际应用不多。参考资料来源:—半导体电阻率参考资料来源:—本征半导体

导体和半导体区别 负电阻率温度特性

半导体的类型-N型、P型是怎样定义和区别的? 下面,我们将采用对比分析的方法来认识P型半导体和N型半导体。P型半导体也称为空穴型半导体。P型半导体即空穴浓度远大于自由电子浓度的杂质半导体。在纯净的硅晶体中掺入三价元素(如硼),使之取代晶格中硅原子的位子,就形成P型半导体。在P型半导体中,空穴为多子,自由电子为少子,主要靠空穴导电。空穴主要由杂质原子提供,自由电子由热激发形成。掺入的杂质越多,多子(空穴)的浓度就越高,导电性能就越强。N型半导体也称为电子型半导体。N型半导体即自由电子浓度远大于空穴浓度的杂质半导体。在纯净的硅晶体中掺入五价元素(如磷),使之取代晶格中硅原子的位置,就形成了N型半导体。在N型半导体中,自由电子为多子,空穴为少子,主要靠自由电子导电。自由电子主要由杂质原子提供,空穴由热激发形成。掺入的杂质越多,多子(自由电子)的浓度就越高,导电性能就越强。扩展资料半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。半导体在收音机、电视机以及测温上有着广泛的应用。如二极管就是采用半导体制作的器件。半导体是指一种导电性可受控制,范围可从绝缘体至导体之间的材料。无论从科技或是经济发展。

导体和半导体区别 负电阻率温度特性

半导体有哪些独特的性能? 半导体材料的独特性能主要包括以下几个方面。(1)半导体材料的电阻率与它自身所含的杂质关系很大,当半导体材料中含有极微量的杂质时,就可使其电导率有很大的变化。。

半导体的电阻为什么随温度升高而降低 因为在一定温度下,半导体的电子空穴对的产生和复合同时存在并达到动态平衡,此时半导体具有一定的载流子密度,从而具有一定的电阻率。温度升高时,将产生更多的电子空穴对。

影响半导体性能的三个因素 半导体五大特性∶掺杂性,热敏性,光敏性,负电阻率温度特性,整流特性。三个因素—杂质、温度、光照

半导体有哪些用途 半导体的用途:用半导体材料制成的部件、集成电路等是电子工业的重要基础产品,在电子技术的各个方面已大量使用。半导体材料、器件、集成电路的生产和科研已成为电子工业的重要组成部分。在新产品研制及新技术发展方面,比较重要的领域有:1、集成电路它是半导体技术发展中最活跃的一个领域,已发展到大规模集成的阶段。在几平方毫米的硅片上能制作几万只晶体管,可在一片硅片上制成一台微信息处理器,或完成其它较复杂的电路功能。集成电路的发展方向是实现更高的集成度和微功耗,并使信息处理速度达到微微秒级。2、微波器件半导体微波器件包括接收、控制和发射器件等。毫米波段以下的接收器件已广泛使用。在厘米波段,发射器件的功率已达到数瓦,人们正在通过研制新器件、发展新技术来获得更大的输出功率。3、光电子器件半导体发光、摄象器件和激光器件的发展使光电子器件成为一个重要的领域。它们的应用范围主要是:光通信、数码显示、图象接收、光集成等。定义:半导体(semiconductor),指常温下导电性能介于导体(conductor)与绝缘体(insulator)之间的材料。分类:按化学成分可分为元素半导体和化合物半导体两大类。锗和硅是最常用的元素半导体;。

#半导体#电阻率#半导体产业#导体和绝缘体#自由电子

随机阅读

qrcode
访问手机版