ZKX's LAB

正态分布的数学期望是多少? 正态分布数学期望

2020-07-19知识35

正态分布,标准正态分布他们的数学期望和数学方差是什么 0—1分布,数学期望p 方差p(1-p);二项分布(贝努里概型),数学期望np 方差np(1-p);泊松分布,数学期望λ 方差λ;均匀分布,数学期望(a+b)/2 方差[(b-a)^2]/12;指数分布。正态分布的数学期望是? 正态分布的期望就是μ,也就是对称轴,楼主追问的问题答案是1(因为两个区间长度一样都是2,概率也一样说明这两个区间关于μ对称,所以对称轴就是两个区间的中间(-1+3)/2。正态分布的期望值和方差是什么? 在概率论2113和统计学中,数学期望5261(mean)(或均值,亦简称期望)为试验4102中每次可能结果的概率乘以其1653结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差为各个数据与平均数之差的平方的和的平均数,即其中,x表示样本的平均数,n表示样本的数量,xi表示个体,而s2就表示方差。扩展资料当数据分布比较分散(即数据在平均数附近波动较大)时,各个数据与平均数的差的平方和较大,方差就较大;当数据分布比较集中时,各个数据与平均数的差的平方和较小。因此方差越大,数据的波动越大;方差越小,数据的波动就越小。样本中各数据与样本平均数的差的平方和的平均数为样本方差;样本方差的算术平方根为样本标准差。样本方差和样本标准差都是衡量一个样本波动大小的量,样本方差或样本标准差越大,样本数据的波动就越大。方差和标准差为测算离散趋势最重要、最常用的指标,它是测算数值型数据离散程度的最重要的方法。标准差为方差的算术平方根,用S表示。参考资料来源:-方差参考资料来源:-数学期望

#数学#正态分布#总体方差#方差公式#概率论

随机阅读

qrcode
访问手机版