你觉得写实画能反映事实吗? 准确地说,写实画能够反映部分事实,而且是创作者想要表达的那一部分事实。这样的结论从一些顶级的写实画家的作品中国可以看出端倪:写实画不是借景抒情,就是借物抒情。写实画在艺术形态上属于具象艺术,通过对外部物象的观察和描摹,亲历自身的感受和理解来再现外界的物象。而写实画这类的作品符合观者的视觉经验,为观者提供感官的审美愉悦,从而与创作者形成共鸣。写实绘画源自西方,特别是“文艺复兴”时期形成了一次艺术的辉煌期,从借助神话故事或者宗教故事来表达人文主义开始,写实画一直都在“写实”的道路上探索和发展。在文艺复兴时期,写实是为了表达新兴资产阶级对于人性解放以及自由主义思想的诉求;在新古典主义时期,布格罗的唯美写实风格,旨在表达古典主义的美学;在法国大革命时期,库贝尔的写实主义,目的是为了表达作者眼里看到的社会不公,等等。从写实画几百年的发展来看,借景抒情,或者借物抒情来完成的绘画作品,都是作者为了表达在现实社会中的某种诉求,不论是表达自由主义还是抗议社会的不公,都是现实的需要。正因为有着这种现实的需要,写实绘画之于这个社会就有着十足的魅力,依然有着广阔的市场。从这个角度来理解,写实画所要的表达的内容。
求不动点的性质及其应用(高分) 看你的提问好像是写论文需要的吧!既然这样就帮你想想吧,拷别人的东西的话会雷同的;不动点的求法:①一般可以从X(定义域,也可叫原像集)中任一点出发建立迭代序列,这样在实现上是很方便的;②大多情况下f(x)=x的不动点x[0]在大多数情况下不易求得,因此往往用x[n]作为其近似值,这样就首先要证明迭代的x[n]具有收敛极限,另外还要估计它的误差。误差的求法一般这样解决|x[n]-x[0]|=|x[n]-x[n+p]|再令p趋向无穷求得;经典的例子可以参考度量空间中的压缩映射;③其实可以对①改进为只需要它在以零次近似x[0]为中心的某个领域内满足迭代收敛即可;④其实还可以得出高阶映射形式下的不动点存在定理,还是以压缩映射为例子,普通形式是只要k|x-y|>|f(x)-f(y)这里k(如果是在一个紧空间里面k可以等1都有结论成立),可以推广为n次迭代收敛形式:k|x-y|>|fn(x)-fn(y)|⑤有些时候不动点可能不止一个,但是完备的距离空间里面的映射它的不动点是唯一的;至于它的应用方面也很多啊!①一般比如说数列中有递推关系a[n+1]=f(a[n]),一般这种递推函数都是初等函数,如果它连续的话,a[n]的极限就是f(x)的不动点;注:其实这里的递推可以是多元的或者非初等的,但只要连续即可。②。
简单介绍一下现代数学的发展 数学 分类参考数学史中国数学史外国数学史:巴比伦数学,埃及古代数学,希腊古代数学,印度古代数学,玛雅数学,阿拉伯数学,欧洲中世纪数学,十六、十七世纪数学,十八世纪数学,十九世纪数学。中国数学家:刘徽 祖冲之 祖暅 王孝通 李冶 秦九韶 杨辉 王恂 郭守敬 朱世杰 程大位 徐光启 梅文鼎 年希尧 明安图 汪莱 李锐 项名达 戴煦 李善兰 华蘅芳 姜立夫 钱宝琮 李俨 陈建功 熊庆来 苏步青 江泽涵 许宝騄 华罗庚 陈省身 林家翘 吴文俊 陈景润 丘成桐国外数字家:泰勒斯 毕达哥拉斯 欧多克索斯 欧几里得 阿基米德 阿波罗尼奥斯 丢番图 帕普斯 许帕提娅 阿耶波多第一 博伊西斯,A.M.S.婆罗摩笈多 花拉子米 巴塔尼 阿布·瓦法 奥马·海亚姆 婆什迦罗第二 斐波那契,L.纳西尔丁·图西 布雷德沃丁,T.奥尔斯姆,N.卡西 雷格蒙塔努斯,J.塔尔塔利亚,N.卡尔达诺,G.费拉里,L.邦贝利,R.韦达,F.斯蒂文,S.纳皮尔,J.德扎格,G.笛卡尔,R.卡瓦列里,(F)B.费马,P.de 沃利斯,J.帕斯卡,B.巴罗,I.格雷果里,J.関孝和 牛顿,I.莱布尼茨,G.W.洛必达,G.-F.-A.de 伯努利家族 棣莫弗,A.泰勒,B.马克劳林,C.欧拉,L.克莱罗,A.-C.达朗贝尔,J.le R.蒙蒂克拉,J.E.朗伯,J.H.贝祖,E.拉格朗日,J.-L.蒙日,。