ZKX's LAB

什么是衰落信道 衰落信道函数

2020-09-27知识31

有谁知道快衰落无线信道的特性 快衰落义项指多义词的不同概念,如李娜的义项:网球运动员、歌手等;非诚勿扰的义项:冯小刚执导电影、江苏卫视交友节目等。查看详细规范>;>;快衰落(Fast Fading):移动台附近的散射体(地形,地物和移动体等)引起的多径传播信号在接收点相叠加,造成接收信号快速起伏的现象。主要由于多径传播而产生的衰落,由于移动体周围有许多散射、反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加,其合成信号幅度表现为快速的起伏变化,其变化率比慢衰落快。10概述快衰落快衰落主要由于多径传播而产生的衰落,由于移动体周围有许多散射、反射和折射体,引起信号的多径传输,使到达的信号之间相互叠加,其合成信号幅度表现为快速的起伏变化,它反映微观小范围内数十波长量级接收电平的均值变化而产生的损耗,其变化率比慢衰落快,故称它为快衰落,由于快衰落表示接收信号的短期变化,所以又称短期衰落(short-term-fading)。移动通信中信号随接受机与发射机之间的距离不断变化即产生了衰落。其中,信号强度曲线的中直呈现慢速变化,称为慢衰落;曲线的瞬时值呈快速变化,称快衰落。可见快衰落与慢衰落并不是两个独立的衰落(虽然它们的产生原因不同),快。

什么是衰落信道 衰落信道函数

瑞利衰落信道的如何克服 在MIMO中,传统的多天线被用来增加分集度从而克服信道衰落。具有相同信息的信号通过不同的路径被发送出去,在接收机端可以获得数据符号多个独立衰落的复制品,从而获得更高的接收可靠性。举例来说,在慢瑞利衰落信道中,使用1根发射天线n根接收天线,发送信号通过n个不同的路径。如果各个天线之间的衰落是独立的,可以获得最大的分集增益为n,平均误差概率可以减小到,单天线衰落信道的平均误差概率为。对于发射分集技术来说,同样是利用多条路径的增益来提高系统的可靠性。在一个具有m根发射天线n根接收天线的系统中,如果天线对之间的路径增益是独立均匀分布的瑞利衰落,可以获得的最大分集增益为mn。智能天线技术也是通过不同的发射天线来发送相同的数据,形成指向某些用户的赋形波束,从而有效的提高天线增益,降低用户间的干扰。广义上来说,智能天线技术也可以算一种天线分集技术。分集技术主要用来对抗信道衰落。相反,MIMO信道中的衰落特性可以提供额外的信息来增加通信中的自由度(degrees of freedom)。从本质上来讲,如果每对发送接收天线之间的衰落是独立的,那么可以产生多个并行的子信道。如果在这些并行的子信道上传输不同的信息流,可以提供传输数据。

什么是衰落信道 衰落信道函数

什么是Nakagami衰落信道?Nakagami信道模型对实测数据具有很好的拟合性,因此它在理论上已经成为一类具有广泛代表意义的无线信道模型并具有重要的应用价值。.

什么是衰落信道 衰落信道函数

瑞利衰落信道的适用范围 瑞利衰落模型适用于描述建筑物密集的城镇中心地带的无线信道。密集的建筑和其他物体使得无线设备的发射机和接收机之间没有直射路径,而且使得无线信号被衰减、反射、折射、衍射。在曼哈顿的实验证明,当地的无线信道环境确实接近于瑞利衰落。[3]通过电离层和对流层反射的无线电信道也可以用瑞利衰落来描述,因为大气中存在的各种粒子能够将无线信号大量散射。瑞利衰落属于小尺度的衰落效应,它总是叠加于如阴影、衰减等大尺度衰落效应上。信道衰落的快慢与发射端和接收端的相对运动速度的大小有关。相对运动导致接收信号的多普勒频移。图中所示即为一固定信号通过单径的瑞利衰落信道后,在1秒内的能量波动,这一瑞利衰落信道的多普勒频移最大分别为10Hz和100Hz,在GSM1800MHz的载波频率上,其相应的移动速度分别为约6千米每小时和60千米每小时。特别需要注意的是信号的“深衰落”现象,此时信号能量的衰减达到数千倍,即30~40分贝。

频率选择性衰落信道的概念 Jake信道仿真实验2113 当多径扩展远5261远小于信号的符号周期时,衰落信道4102模型经常用1653于仿真通信系统在多径信道上的性能。通常我们假设衰落过程相对于信号的符号速率要慢得多,因此我们可以精确地估计信号的相位。所以我们只需考虑幅度衰落带来的影响,而不必关心相位的影响。同时还假设符号间的衰落是相互独立的。Rice衰落信道模型经常用于仿真一个因直射路径和多个散射路径共同产生的幅度衰落信道模型。通常假设这些路径的延迟远远小于信号带宽的倒数,即延迟远小于符号宽度。一个信号x(t)经过Rice信道后的输出y(t)可以表示为:这里z(t)是幅度衰落因式,它表示为:这里x1(t)和x2(t)是高斯随机变量N(0,σ),衰落信道的功率由以下条件归一化表示:A和σ 的值由Rice衰落因子K决定。当K=0时为纯粹的散射信道,K=∞时是简单的频带信道(无衰落)。图13.5是利用SystemView系统提供的Rice衰落信道模型图符建立的基带等效仿真模型。作为比较,进行了两种假设信道的比特误码率(BER)测试,其中一个信道为Rice衰落加高斯噪声,而另一个信道只有高斯噪声。二者的仿真结果与衰落信道的理论BER曲线作了比较,图13.6是它们的比较覆盖图。返 回返 回

什么是衰落信道 在无线通信领域,衰落是指由于信道的变化导致接收信号7a64e78988e69d8331333337383831的幅度发生随机变化的现象,即信号衰落。导致信号衰落的信道被称作衰落信道。衰落可按时间、空间、频率,三个角度来分类。(1)在时间上,分为慢衰落和快衰落。慢衰落描述的是信号幅度的长期变化,是传播环境在较长时间、较大范围内发生变化的结果,因此又被称为长期衰落、大尺度衰落。快衰落则描述了信号幅度的瞬时变化,与多径传播有关,又被称为短期衰落、小尺度衰落。慢衰落是快衰落的中值。多径传播使信号包络产生的起伏虽然比信号的周期缓慢,但是仍然可能是在秒或秒以下的数量级,衰落的周期常能和数字信号的一个码元周期相比较,故通常将由多径效应引起的衰落称为快衰落。即使没有多径效应,仅有一条无线电路径传播时,由于路径上季节、日夜、天气等的变化,也会使信号产生衰落现象。这种衰落的起伏周期可能较长,甚至以若干天或若干小时计,古称这种衰落为慢衰落。无线通信中,接收端可能会在一段时间内接收到许多来自不同路径的相同信号,这段时间称为延迟扩散(delayspread),而延迟扩散的倒数称作同调带宽(CoherenceBandwidth),物理意义就是在这段带宽区间,衰落的。

信道衰落分哪几种,分别说明抵抗这些衰落的方法 信道衰落构成有三种:a)仅路径损耗 b)阴影衰落和路径损耗 c)多径传播,阴影衰落和路径损耗。细分的话是基于 多径时延扩展 分为 平坦衰落 和 频率选择性衰e68a84e799bee5baa631333337393565落平坦衰落:信号带宽<;信道带宽 时延<;符号周期频率选择性衰落:信号带宽>;信道带宽 时延>;符号周期基于多普勒扩展 分为 快衰落 和 慢衰落快衰落:(高速多普勒扩展)相干时间<;符号周期 信道变化比基带信号变化快慢衰落:(低速多普勒扩展)相干时间>;符号周期 信道变化比基带信号变化慢由于多径分量很多或者传播环境和介电性质未知,须用统计多径信道模型。常分为窄带衰落模型和宽带衰落模型(比窄带衰落多了多径时延扩展,造成ISI)抗摔落技术一般包括:分集(常用时间分集),抗摔落编码技术(比如在AWGN信道编码基础上结合使用交织器),自适应技术(提高可靠性和频带利用率),MIMO技术(能够显著提高频谱利用率,其发送端和接受端都可进行分集)ISI(码间串扰)的抵抗措施:均衡(单载波时域/频域 均衡),多载波复用技术(一般是OFDM,还有矢量编码),扩频关于第二个问题,很少见到,比如,针对快衰落的技术,而是针对某一项指标或者问题的技术措施,比如频谱。

什么是Nakagami衰落信道? Nakagami信道模型对实测数据具有很好的拟合性,因此它在理论上已经成为一类具有广泛代表意义的无线信道模型并具有重要的应用价值.整数阶(m为整数)的Nakagami信道模型仿真相对容易实现,而对分数阶(m不为整数)的互相关Nakagami信道仿真的研究较少,缺乏简单有效的方法.本文主要介绍采用信道分解合成技术产生Nakagami信道的基本原理和具体步骤,并给出了部分仿真的结果,证实了该方法的有效性.通过仿真概率密度曲线逼近理论曲线的程度和程序运行效率两方面对生成Nakagami-m分布随机变量的几种典型方法-Brute force法、正弦求和法、逆变换法性能进行研究和比较.结果表明,无论是对理论曲线的逼近程度还是运行效率,逆变换法都是三种方法中最优的。

#信道带宽#信道估计#通信#多径效应#频率选择性衰落

随机阅读

qrcode
访问手机版