点到直线的距离公式是什么?以及推导过程
高中数学点到直线的距离公式是怎么推导出来的,书本上的推导过程跳不太多我看不明白,请有学问的详细的说一下吧,我在这里拜谢了 这东西要自己推导才记得牢给你个思路你先设一点 不在直线上的(A,B)然后在直线上取一点比如是Y=2X吧 则点就是(x,2x)然后求2点之间的距离 会吧?然后求最小值
点到直线距离公式推导过程
点到直线的距离是怎么推导出来这个公式的? |证明:设点P,直线2113AB,在AB上任取一点C,连5261接PC,直线AB的法向量为4102n,向量AB与n的夹角为a,P到直线AB的距离为HH=|1653PC|cos(PC,n)|PC|PC点乘n/(|PC|*|n|)|PC点乘n/|n|(取绝对值是考虑距离恒为正数)记A(x1,y1,z1),B(x2,y2,z2),则A,B之间的距离为d=√[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]
点到直线的距离公式如何推导? 设:直线方程y=ax+b 点的坐标(p,q)考虑到要求点到直线的距离,与过该点与已知直线垂直的直线重合,所以先求过已知点与已知直线垂直的直线方程:y=(-1/k)x+(p/k+q)联立两方程求得交点坐标,然后再用平面间两点距离公式求距离.