概率题求出数学期望后怎么求方差? 方差有两种求法第一种:根据定义求设方差=Var(X)则Var(X)=(2-37/10)^2×(3/5)+(3-37/10)^2×(3/10)+(4-37/10)^2×(1/10)第二种:用公式求方差Var(X)=E(X^2)-[E(X)]^2=[(2^2×5/3)+(3^2×3/10)+(4^2×1/10)]-(37/10)^2这两种算法的结果是一样的
概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布的数学期望是分布区间左右两端和的平均值,方差为分布区间左右两端差值平方的十二分之一。即,若X服从[a,b]上的均匀分布,则数学期望EX,方差DX计算公式分别为:对这道题本身而言,数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3扩展资料均匀分布在概率论和统计学中,均匀分布也叫矩形分布,它是对称概率分布,在相同长度间隔的分布概率是等可能的。均匀分布由两个参数a和b定义,它们是数轴上的最小值和最大值,通常缩写为U(a,b)。数学期望在概率论和统计学中,数学期望(mean)(或均值,亦简称期望)是试验中每次可能结果的概率乘以其结果的总和,是最基本的数学特征之一。它反映随机变量平均取值的大小。方差方差是在概率论和统计方差衡量随机变量或一组数据时离散程度的度量。概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度。统计中的方差(样本方差)是每个样本值与全体样本值的平均数之差的平方值的平均数。在许多实际问题中,研究方差即偏离程度有着重要意义。
求某概率分布的数学期望 由定义得:E(ξ)=∑KP(ξ=k)=∑K(k-1)(1-θ)^(k-2)θ^2利用等式:K(k-1)(1-θ)^(k-2)=[(1-θ)^(k)]''因此有:E(ξ)=θ^2∑[(1-θ)^(k)]''(交换求和与求导秩序得)=θ^2{∑[(1-θ)^(k)]}''其中和式∑[(1-θ)^(k)]=[(1-θ)^2/θ],其二阶导数为2/θ^3最后算得:E(ξ)=2/θ
关于数学期望、方差和标准差的知识 期望为1.2方差为0.36标准差为0.6
求高手指点一下:条件概率和条件数学期望的关系 甲乙两队进行一场排球比赛,根据以往的经验,单局比赛甲队胜乙队的概率为0.6,五局三胜,又各局比赛相互无影响,用X表示比赛的场数,求X的概率分布和数学期望
数学期望为0跟概率密度函数的奇偶性有什么关系
概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布的期2113望:均匀分布的期望是取值5261区间[a,b]的中点4102(a+b)/2。均匀分布1653的方差:var(x)=E[X2]-(E[X])2var(x)=E[X2]-(E[X])2=1/3(a2+ab+b2)-1/4(a+b)2=1/12(a2-2ab+b2)=1/12(a-b)2若X服从[2,4]上的均匀分布,则数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3。扩展资料1、标准均匀分布若a=0并且b=1,所得分布U(0,1)称为标准均匀分布。标准均匀分布的一个有趣的属性是,如果u1具有标准均匀分布,那么1-u1也是如此。2、相关分布(1)如果X服从标准均匀分布,则Y=Xn具有参数(1/n,1)的β分布。(2)如果X服从标准均匀分布,则Y=X也是具有参数(1,1)的β分布的特殊情况。(3)两个独立的,均匀分布的总和产生对称的三角分布。参考资料来源:-均匀分布
概率分布及数学期望
数学期望与概率区别 期望简单的说就是平均值,在概率学中出现我们就把它叫做了期望,期望=总和/n概率是在特定的范围中出现的次数与总数的比:P(a)=出现的次数/总数
已知概率密度函数怎么求它的数学期望和方差 求方差要利用个公式,DX=EX^2-(EX)^2期望EX=∫f(x)*x dx下面的积分区间都是-a到a 为了书写我就不写明了.EX=∫1/2a*x dx=0EX^2=∫(1/2a)*x^2 dx=1/3 a^2DX=EX^2-(EX)^2=(1/3)a^2当然,对于一些常见分布的期望和方差可以直接背公式请别忘记采纳,祝学习愉快