指数分布的期望 f(x)=λe^(-λx)E(X),对xf(x)积分,从0到正无穷。积出的结果就是1/λ.方差,对x^2f(x)积分。
指数分布的数学期望怎么计算? 抛砖引玉,如有问题,感谢指出,不胜感激。已知连续型随机变量 服从指数分布:则随机变量 的概率密度函…
求正态分布的数学期望和方差的推导过程 不用二重积分的,可以有简单的办法的.设正态分布概率密度函数是f(x)=[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]其实就是均值是u,方差是t^2,不太好打公式,你将就看一下.于是:e^[-(x-u)^2/2(t^2)]dx=(√2π)t.(*)积分区域是从负无穷到正无穷,下面出现的积分也都是这个区域,所以略去不写了.(1)求均值对(*)式两边对u求导:{e^[-(x-u)^2/2(t^2)]*[2(u-x)/2(t^2)]dx=0约去常数,再两边同乘以1/(√2π)t得:[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]*(u-x)dx=0把(u-x)拆开,再移项:x*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=u*∫[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx也就是x*f(x)dx=u*1=u这样就正好凑出了均值的定义式,证明了均值就是u.(2)方差过程和求均值是差不多的,我就稍微略写一点了.对(*)式两边对t求导:[(x-u)^2/t^3]*e^[-(x-u)^2/2(t^2)]dx=√2π移项:[(x-u)^2]*[1/(√2π)t]*e^[-(x-u)^2/2(t^2)]dx=t^2也就是(x-u)^2*f(x)dx=t^2正好凑出了方差的定义式,从而结论得证.
如何推导指数分布的期望?为什么是 E(X)=1/λ f(x)=λe^(-λx)E(X),对xf(x)积分,从0到正无穷.积出的结果就是1/λ.方差,对x^2f(x)积分.