ZKX's LAB

用mathematica解一个简单的二阶偏微分方程 二阶抛物型偏微分方程 pdf

2020-09-26知识18

2阶多自变量偏微分方程的分类除了椭圆,抛物,双曲,请问何为超双曲型和广义抛物型方程,请给出明确的定义.主要说明3自变量的情况即可,

二阶偏微分方程有哪些基本类型,举例说明 椭圆elliptic:Laplace方程,u_xx+u_yy+u_zz=0,定态薛定谔方程u_xx+u_yy+u_zz+V(x,y,z)u=Eu。抛物parabolic:热方程,u_t=u_xx+u_yy.双曲hyperbolic:三维波方程u_tt=u_xx+u_yy+u_zz以上三种并未给出边值条件或者初值条件,请参考:下面这本书的第二章美国数学会经典影印系列:偏微分方程(第二版)(英文版)Lawrence C.Evans 著

怎样判断微分方程的线性与非线性 对于线性微分2113方程,其中只能出现函数本身,5261以及函数的任4102何阶次的导函数;函数本身跟所1653有的导函数之间除了加减之外,不可以有任何运算;函数本身跟本身、各阶导函数本身跟本身,都不可以有任何加减之外的运算;不允许对函数本身、各阶导函数做任何形式的复合运算,例如:siny、cosy、tany、lny、lgx、y2、y3。若一个微分方程不符合上面的条件,就是非线性微分方程。扩展资料线性方程:在代数方程中,仅含未知数的一次幂的方程称为线性方程。这种方程的函数图象为一条直线,所以称为线性方程。可以理解为:即方程的最高次项是一次的,允许有0次项,但不能超过一次。比如ax+by+c=0,此处c为关于x或y的0次项。微分方程:含有自变量、未知函数和未知函数的导数的方程称为微分方程。如果一个微分方程中仅含有未知函数及其各阶导数作为整体的一次幂,则称它为线性微分方程。可以理解为此微分方程中的未知函数y是不超过一次的,且此方程中y的各阶导数也应该是不超过一次的。参考资料-线性微分方程

一阶线性偏微分方程都是抛物型的吗? 抛物型应该是对二阶偏微方程的分类吧,A=0就不适合这种讨论举个例子,按你这样说,对一元二次方程ax^2+bx+c=0,a=0,b=0,c≠0,△=b^2-4ac=0,那表明方程有两个相等实根?

偏微分方程的分类 二阶偏微分方程的一般形式为A*Uxx+2*B*Uxy+C*Uyy+D*Ux+E*Uy+F*U=0其特征方程为A*(dy)^2-2*B*dx*dy+C*(dx)^2=0若在某域内B^2-A*C0则在此域内称为双曲形方程其实主要是按特征方程的曲线类型分的注:Uxx表示U对x求二阶.

用mathematica解一个简单的二阶偏微分方程 1 你的代码里混了中文标点2113。2 你的方程是热传5261导方程,它的解4102析解一般是级数解。1653Mathematica截止目前,是不用级数来表示方程的解的。(软件的这种处理方法可能和级数的收敛判定困难有关—Mathematica是个非常严谨的数学软件。所以DSolve无法求解你的方程。3 退一步讲,即使你想补上a的具体数值,使用NDSolve来求解这个方程的数值解,在你所给的条件下,这也是做不到的。如果你学习过偏微分方程的相关知识,或者你手头有《数学物理方程》之类的课本,你就会知道,你所给的限制条件,不属于教科书里通常会给出的限制条件的任何一种。如果你具备更深入的有限差分方面的知识,你就会知道,仅仅给出三个孤立的点上的函数值,也是根本无法求得这个方程的定解的。你的限制条件是你随手给的?还是你只是单纯地写错了条件?总之你再检查检查吧。知道允许编辑已采纳答案了,那就把评论区的东西弄上来吧:结合题主在追问中的补充来看,他所想求解的很可能是一个初始条件为DiracDelta函数的热传导方程初值问题,这个问题的正确设法是:DSolve[{D[p[x,t],t]-(1/(2*a))*D[p[x,t],x,x]=0,p[x,0]=DiracDelta[x]},p[x,t],{x,t}]v10.3以上的Mathematica应该都是可以。

#微分方程#mathematica

随机阅读

qrcode
访问手机版