数分,魏尔斯特拉斯判别法 同学,你要先了解一致收敛和收敛的差别在哪:收敛里的N和ε,x都有关,而一致收敛里的N只和ε有关,如楼上给的证明,这里的N只和ε有关,对于任何zhidaox∈I,都回成立,所以是一致收敛(而普通收敛是对于每一个固定的答x都成立,N和ε,x都有关)
含参量反常积分中一致收敛的柯西准则和魏尔斯特拉斯判别法,两个定理如何证明呢?谢谢 ABCDEFG+HIJKLMN就行了!
魏尔斯特拉斯判别法能判断不一致收敛么
绝对收敛与一致收敛的关系 用魏尔斯特拉斯判2113别法判断函数ΣUn一致5261收敛,则该函数Σ4102Un必定是绝对收敛。1653一致收敛性是函数列或函数项级数的一种性质。一致收敛函数的判别方法有很多种,最常见的有Cauchy判别法、Abel判别法、Dirichlete判别法等。一致收敛函数具有连续性、可积性、可微性的特点。柯西准则判别法和魏尔斯特拉斯判别法是较为实用和方便的一致收敛判别法,一般要首先考虑使用。如果能用魏尔斯特拉斯判别法判ΣUn一致收敛,则ΣUn必定是绝对收敛,从而魏尔斯特拉斯判别法对条件收敛的函数项级数失效。扩展资料由条件收敛级数重排后所得的新级数,即使收敛,也不一定收敛于原来的和数。而且,条件收敛级数适当排列后,可得到发散级数,或收敛于事先任意指定的数。在无穷级数的研究中,绝对收敛性是一项足够强的条件,许多有限项级数具有的性质,在一般的无穷级数不一定满足,只有在绝对收敛的无穷级数也会具有该性质。两个绝对收敛的无穷级数通项的乘积以任何方式排列成的级数和都为原来两个级数和的乘积。参考资料来源:-一致收敛性
大学数学分析一致收敛问题
魏尔斯特拉斯判别法能判断不一致收敛么 魏尔斯特拉斯判别法(Weierstrass Discriminance)是分析学中一条十分重要的判定法则,主要用于判定数项级数的收敛、函数项级数的一致收敛、反常积分的收敛以及反常含参积分的一致收敛等。