ZKX's LAB

样本的数学期望和方差代表什么 数学期望和方差的关系?

2020-09-26知识25

概率论中均匀分布的数学期望和方差该怎么求啊? 均匀分布的期2113望:均匀分布的期望是取值5261区间[a,b]的中点4102(a+b)/2。均匀分布1653的方差:var(x)=E[X2]-(E[X])2var(x)=E[X2]-(E[X])2=1/3(a2+ab+b2)-1/4(a+b)2=1/12(a2-2ab+b2)=1/12(a-b)2若X服从[2,4]上的均匀分布,则数学期望EX=(2+4)/2=3;方差DX=(4-2)2/12=1/3。扩展资料1、标准均匀分布若a=0并且b=1,所得分布U(0,1)称为标准均匀分布。标准均匀分布的一个有趣的属性是,如果u1具有标准均匀分布,那么1-u1也是如此。2、相关分布(1)如果X服从标准均匀分布,则Y=Xn具有参数(1/n,1)的β分布。(2)如果X服从标准均匀分布,则Y=X也是具有参数(1,1)的β分布的特殊情况。(3)两个独立的,均匀分布的总和产生对称的三角分布。参考资料来源:-均匀分布

样本的数学期望和方差代表什么 数学期望和方差的关系?

关于样本均值的数学期望和样本均值的方差在实际生活中的含义 方差主要科学实验和工程上,比如不同实验条件下,样本【白鼠、炼钢的钢样等】与期望值的偏差等等,在炼钢的时候我们根据经验知道不同特性【硬度、弹性等】的钢与温度区间对应,这个区间可能几乎是一点,也可能是一个非常小的区间,我们生产的期望是尽快确定这个区间或点,以减少实验次数或加快实验进度等,如果没有数学指导,我们可能要进行很多次、非常繁杂、很费时间的样本生产试验…而如果能够对某一阶段的实验数据进行精确或大概【预估】的数学计算【本身方差与期望就来自于实际生活中,有一定先验性】,而方差等就能很好反应如炼钢等生产实验的特性或趋势,因为实验都有过程,所以我们就很期望尽快或确定的时间内完成实验,这个时候数学期望的计算就大有用途:毕竟这个期望或预估是来自于经验【类同或完全相异的样本】和实验数据,所以在实践指导中是有偏差的,但是有了这些计算,就可以更好制定计划、安排生产等,提供决策基础数据,避免盲目,可以有效缩短周期、更有目的性,在这里的数学期望是预测试炼次数的,同时就可以计算温度区间【每次增加温度0.1度或1度或10度等】,如果没有数学计算,我们的实验就完全是在碰运气,而有了计算,得到理论上的数学期望值【样本若完全非线性且差异特大就不。

样本的数学期望和方差代表什么 数学期望和方差的关系?

样本均值的数学期望和方差怎么算 样本均值是一个统计量,是随机变量,在有了样本观测值之后,样本均值才有对应的观测值。当样本观测值黑没有得到时,我们只能把它作为随机变量对待,这时它就有数学期望、方差等数字特征。

样本的数学期望和方差代表什么 数学期望和方差的关系?

什么情况下样本期望与方差独立?

样本方差S^2的数学期望怎么求

方差与数学期望的关系公式DX=EX^2-(EX)^2 不太清楚是什么意思 举例说下。谢谢 将第一个公式中括号5261内的完全平方打开得到DX=E(X^41022-2XEX+(EX)^2)E(X^2)-E(2XEX)+(EX)^2E(X^2)-2(EX)^2+(EX)^2E(X^2)-(EX)^2若随机变量X的分布函1653数F(x)可表示成一个非负可积函数f(x)的积分,则称X为连续性随机变量,f(x)称为X的概率密度函数(分布密度函数)。数学期望 完全由随机变量X的概率分布所确定。若X服从某一分布,也称 是这一分布的数学期望。若X的取值比较集中,则方差D(X)较小,若X的取值比较分散,则方差D(X)较大。因此,D(X)是刻画X取值分散程度的一个量,它是衡量取值分散程度的一个尺度。扩展资料:离散型随机变量与连续型随机变量都是由随机变量取值范围(取值)确定。变量取值只能取离散型的自然数,就是离散型随机变量。例如,一次掷20个硬币,k个硬币正面朝上,k是随机变量。k的取值只能是自然数0,1,2,…,20,而不能取小数3.5、无理数,因而k是离散型随机变量。如果变量可以在某个区间内取任一实数,即变量的取值可以是连续的,这随机变量就称为连续型随机变量。例如,公共汽车每15分钟一班,某人在站台等车时间x是个随机变量,x的取值范围是[0,15),它是一个区间,从理论上说在这个区间内可取任一实数3.5、无理数 等,。

#方差计算公式#数学期望#方差公式#随机变量#样本方差

随机阅读

qrcode
访问手机版