用正态分布的公式怎样推导它的期望 设ξ服从N(μ,^2),求Eξξ的分布密度为φ(x)=1/[√(2π)σ]e^(-(x-μ)^2/(2σ^2))从而Eξ=∫(+∞)(-∞)x/[√(2π)σ]e^(-(x-μ)^2/(2σ^2))dx变换t=(x-μ)/σ,得Eξ=∫(+∞)(-∞)(μ+σt)/√(2π)e^(-(t^2)/2)dtμ/√(2π)∫(+∞)(-∞)e^(-(t^2)/2)dt+σ/√(2π)∫(+∞)(-∞)te^(-(t^2)/2)dtμ/√(2π)*√(2π)+0=μ(+∞)(-∞)表示积分的上下限,敲这些符号好累,楼主加分啊后面那个的μ改为σ,楼主很仔细哦那可以分开的啊把(μ+σt)/√(2π)分成μ/√(2π)和σt/√(2π)嘛,分别积分就行啦。
小弟求教数学期望和典型分布的方差的公式及推导方式 这里介绍的是几种常用的分布的数学期望E和方差D:二项分布B(n,p),E=np,D=npq,泊松分布P(λ),E=λ,D=λ,正态分布N(0,1),E=0,D=1,对于文科来说,能看有关资料及知道这几个。
二项分布数学期望公式的推导B(n,p)期望是E(x)=np 请问是如何推导出来的。 二项分布数学期望公式的推导B(n,p)期望是E(x)=np 请问是如何推导出来的.二项分布数学期望公式的推导B(n,p)期望是E(x)=np 请问是如何推导出来的呢?谢谢二楼的提示,最后一步。
二项分布数学期望公式的推导,x~B(n,p)期望是E(x)=np,是如何推导出来的? 二项分布pk=C(n,k)p^kq^(n-k),k=0,1,2,.n 由期望的定义 n n∑kpk=∑kC(n,k)p^kq^(n-k)=np∑C((n-1),(k-1))p^kq^(n-k)=k=0 k=1 np(p+q)^(n-1)=np
正态分布的数学期望推导过程!希望拍照啊! 第三行是拆开以后第一项奇0得到的
求二项分布的数学期望公式的推导过程,最好发图片 二项分布度pk=C(n,k)p^问kq^(n-k),k=0,1,2,.n由期望答的定义版n n权kpk=∑kC(n,k)p^kq^(n-k)=np∑C((n-1),(k-1))p^kq^(n-k)=k=0 k=1np(p+q)^(n-1)=np
求正态分布的数学期望和方差的推导过程