ZKX's LAB

直线与椭圆推导过程 椭圆的焦半径推导过程?椭圆上一点到焦点距离等于到哪一条直线的距离?过焦点与X轴垂直与椭圆相交的点坐标

2020-09-25知识21

椭圆的通径多长

直线与椭圆推导过程 椭圆的焦半径推导过程?椭圆上一点到焦点距离等于到哪一条直线的距离?过焦点与X轴垂直与椭圆相交的点坐标

椭圆通径是多少? 椭圆的通径是根据长轴和短轴来确定的。椭圆的通径:过焦点的垂直于x轴(或y轴)的直线与椭圆的两交点A,B之间的距离,即|AB|=2*b^2/a。椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>;|F1F2|)。在数学中,椭圆是围绕两个焦点的平面中的曲线,使得对于曲线上的每个点,到两个焦点的距离之和是恒定的。因此,它是圆的概括,其是具有两个焦点在相同位置处的特殊类型的椭圆。椭圆的形状(如何“伸长”)由其偏心度表示,对于椭圆可以是从0(圆的极限情况)到任意接近但小于1的任何数字。扩展资料联结椭圆上任意两点的线段叫作这个椭圆的弦,通过焦点的弦叫作这个椭圆的焦点弦(所以椭圆的长轴也是焦点弦),和长轴垂直的焦点弦叫作这个椭圆的通径(正焦弦)。联结椭圆上任意一点与一个焦点的线段(或这线段的长)叫作椭圆在这点的焦半径,椭圆上任意一点有两条焦半径。椭圆的面镜(以椭圆的长轴为轴,把椭圆转动180度形成的立体图形,其内表面全部做成反射面,中空)可以将某个焦点发出的光线全部反射到另一个焦点处。椭圆的透镜(某些截面为椭圆)有汇聚光线的作用(也叫凸透镜),老花眼镜。

直线与椭圆推导过程 椭圆的焦半径推导过程?椭圆上一点到焦点距离等于到哪一条直线的距离?过焦点与X轴垂直与椭圆相交的点坐标

直线与椭圆相交的弦长公式 直线y=kx+b椭圆:x2/a2+y2/b2=1弦长=√(1+k2)[(xA+xB)2-4xAxB]其中A,B是直线和椭圆的交点xA和xB是点A和B的横坐标

直线与椭圆推导过程 椭圆的焦半径推导过程?椭圆上一点到焦点距离等于到哪一条直线的距离?过焦点与X轴垂直与椭圆相交的点坐标

直线截椭圆的弦长公式,要详细证明,一步步推导~谢谢~! 弦长=│x1-x2│√(k^2+1)=│y1-y2│√[(1/k^2)+1]椭圆弦长公式通用方法是将直线y=kx+b代入曲线方程,化为关于x(或关于y)的一元二次方程,设出交点坐标,利用韦达定理及弦长公式求出弦长。假设直线为:y=kx+b代入椭圆的方程可得:x^2/a^2+(kx+b)^2/b^2=1。设两交点为A、B,点A为(x1,y1),点B为(X2,Y2)则有AB=√(x1-x2)^2+(y1-y2)^2把y1=kx1+by,2=kx2+b分别代入,则有:AB=√(x1-x2)^2+(kx1-kx2)^2(x1-x2)^2+k^2(x1-x2)^2(1+k^2)*│x1-x2│扩展资料同理可以证明:弦长=│y1-y2│√[(1/k^2)+1]设而不求的思想方法对于求直线与曲线相交弦长是十分有效的,然而对于过焦点的圆锥曲线弦长求解利用这种方法相比较而言有点繁琐,利用圆锥曲线定义及有关定理导出各种曲线的焦点弦长公式。参考资料来源:-椭圆弦长公式

#椭圆离心率#韦达定理#直线方程#椭圆#椭圆函数

随机阅读

qrcode
访问手机版