自协方差是常数是是不是平稳过程 只能说是二阶平稳,或者说是狭义平稳因为自协方差函数是随机过程的二阶矩特性函数,不代表随机过程的全部统计特征.
下来哪些过程是平稳的,计算其均值和自协方差函数 因题干条件不完整,缺问题,不能正常作答。r和q矩阵一般来说都是提前设定一个值,因为卡尔曼滤波是一种迭代优化滤波器,所以不必要使得初始化的值十分精确。。
最低0.27元开通文库会员,查看完整内容>;原发布者:lyj7712edu相关函数的性质一、相关函数的性质二、应用举例一、相关函数的性质假设X(t)和Y(t)是平稳相关过程,RX()、RY()和RXY()分别是它们的自相关函数和互相关函数.性质12RX(0)E[X2(t)]ΨX0.平稳过程X(t)的“平均功率”性质2RX()RX(),即RX()是的偶函数.注意:互相关函数既不是奇函数,也不是偶函数,但满足RXY()RYX(),实际问题中只需计算或测量RX(),RY(),RXY()和RYX()在0的值.性质3关于自相关函数和自协方差函数有不等式2RX()RX(0)和CX()Cx(0)X.此式表明:自相关(自协方差)函数都在0处取到最大值.类似的,可推得e68a84e8a2ad7a686964616f31333433623764以下有关互相关函数和互协方差函数的不等式:RXY()RX(0)RY(0),2CXY()CX(0)CY(0).2性质4RX()是非负定的.n即对于任意数组t1,t2,tnT和任意实值函数g(t)都有RX(titj)g(ti)g(tj)0.i,j1说明由于任一连续函数,只要具有非负定性,那么该函数必是某平衡过程的自相关函数.所以对于平稳过程而言,自相关函数的非负定性是最本质的.证明根据自相关函数的定义和均值运算性质有RX(titj)g(ti)g(tj)i,j1E[X(ti)X(tj)]g(ti)g(tj)i,j1nn