怎么应用费马原理证明光的折射是光程为的最小值? 费马原理:光在指定的两点间传播,实际的光程总是一个极值。光在均匀介质中沿直线传播,在介质分界面上的…如何用费马原理证明光的反射定律? 如何用费马原理证明光的反射定律的回答如下:1、方法:1)首先是假设是在均匀介质中,只有反射光线在入射光线和法线的平面内才可能按照最小光程传播,因为copy任何反射光线路径都不小于它在此平面内的投影.2)可以第二步是设入射光线和反射光线分别过百A、B点,在度反射面同侧,作C点与A点沿反射面对称,连接BC交反射面于D点,易证AD=CD,然后由于两点之间直线最短,可以知道ACB是最短光程路线,而且符合反射定律,这样即可证明。2、相关内容:费马原理最早由法国科学家皮埃尔·德·费马在1662年提出:光传播的路径是光程取极值的路径。这个极值可能是最大值、最小值知,甚至是函数的拐点。道最初提出时,又名“最短时间原理”:光线传播的路径是需时最少的路径。费马原理更正确的称谓应是“平稳时间原理”:光沿着所需时间为平稳的路径传播。所谓的平稳是数学上的微分概念,可以理解为一阶导数为零,它可以是极大值、极小值甚至是拐点,费马原理可以证明光的反射原理。3、英文表示:Fermat principle用费马定理证明光的折射与反射定理 哈哈‘‘你问对了‘我的专业反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.折射定律考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM’,PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.假设QQ’=h1,PP'=h2,Q’P’=P,Q'M=x,则(QMP)=n1QM+n2MP既 d(QMP)/dx=n1x/根号(h1*h1+x*+)-n2(p-x)/根号(h2*he+(p-x)*(p-x)由光程的最小条件d(MQP)/dx=0 可得 n1sini1=n2sini2利用费马原理证明光的反射定律及折射定律 费马原理是几何光学中的一条重要原理,由此原理可证明光在均匀介质中传播时遵从的直线传播定律、反射和折射定律,以及傍轴条件下透镜的等光程性等。该原理说,若光线在介质中沿某一路径传播,当光线反向时,必沿同一路径逆向传播。费马原理规定了光线传播的唯一可实现的路径,不论光线正向传播还是逆向传播,必沿同一路径。因而借助于费马原理可说明光的可逆性原理的正确性。光在任意介质中从一点传播到另一点时,沿所需时间最短的路径传播。折射定律(law of refraction)或 斯涅尔定律(Snell's Law)。折射定律:光线通过两介质的界面折射时,确定入射光线与折射光线传播方向间关系的定律,几何光学基本定律之一。如图,入射光线与通过入射点的界面法线所构成的平面称为入射面,入射光线和折射光线与法线的夹角分别称为入射角和折射角,以θ1和θ2表示。折射定律为:①折射光线在入射面内。②入射角和折射角的正弦之比为一常数,用n21表示,即式中n12称为第二介质对第一介质的相对折射率。怎样用时间最短原理(费马提出的)证明光的折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射.利用费马原理证明光的反射定律及折射定律 对反射定律的证明:费马定理的定义是光总是走光程极值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走过用费马定理证明光的折射定律 反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而如何运用费马原理证明光的反射定律和光的折射定律? 运用费马原理证明光在反射和折射的过程中从一点到另一点所用的时间或走的路程比其他任何路径都要短。反射时,可以作出光源关于反射面的对称点,再将它和反射后经过的任意一点连起来,则这条线段的长度就是光所走的路程,可以用三角形两边之和大于第三边的原理证明光只有在这条线段与反射面之间的交点反射走的路程才最短,而在这点反射时,入射角和出射角是相等的。折射的道理一样,只不过要考虑光速的变化,你可以通过相应地按光在两种介质中的速度比例改变光在一种介质中的路程,再同样地通过几何学推证。反射定理考虑由Q发出经反射面到达P的光线.相对于反射面取P的镜像对称点P’,从Q到P任一可能路径QM’P的长度与QM’P’相等.显然,直线QMP’是其中最短的一根,从而路径QMP长度最短.根据肥马原理,QMP是光线的实际路径.折射定律考虑由Q出发经折射面折射到达P的光线.作QQ’与PP’平行,故而共面,我们称此平面为Ⅱ.考虑从Q经折射面上任一点M’到P的光线QM’P.由M’作垂足Q’、P’联线的垂线M’M,不难看出QM’,PM’,既光线QM’P在Ⅱ平面上的投影QMP比QM’P本身的光程更短.可见光程最短的路径应在Ⅱ平面内寻找.假设QQ’=h1,PP'=h2,Q’P’=P,Q'M=x,如何用费马原理证明光的反射定律 费马定理的定义是光总是走光程极百值路线,一般都是极小值。对于光从A到B点的反射来说,如果反射点为C,光线走度过的实际路线必然是使得ACB最短的路线,也版就是入射角等于折射角,入射光线和权反射光线对称的路线,即为折射定律。如何用马吕斯定理或费马原理验证光的反射定律与折射定律? 费马原理对折射定律的证明假设光从介质n_1入射到介质n_2.在两个介质的交界面上取一条直线?为x轴,法线为y轴,建立直角坐标系?在入射光线上任取一点A(x_1,y_1),光线与两介质交界面的交点为B(x,0),在折射光线上任取一点C(x_2,y_2).AB之间的距离为\\sqrt,BC之间的距离为\\sqrt.由费马原理可知,光从A点经过B点到辠C点,所用的时间t 应该是最短的.t=\\left(\\frac\\right)(ABn_1+BCn_2),t 取最小值的条件是\\frac=0.经整理得 \\frac=\\frac,\\sin\\theta_1=\\frac 且 \\sin\\theta_2=\\frac 即 n_1\\sin\\theta_1=n_2\\sin\\theta_2(Snell's law)
随机阅读
- 请问打诺雷德会有什么副作用? 打了诺雷德人很不舒服
- 蜗牛养殖 山东蜗牛养殖基地
- 眶蜂窝织炎冷敷 眼睛忽然肿了怎么办
- 南京水佐岗新房房价 南京哪些小学比较好?哪些小区属于「学区房」?
- 联发股份在行业中排名 全国房地产50强有哪些?依次排名?
- 去九寨沟旅游,想找一家信誉好的旅行社,选中了四川中国旅行社,但有好多家。想知道谁是正宗。 四川省中国旅行社附近地铁
- 苏黎世去比尔 和这个世界交手的这么多年,你是否依然风采依旧,兴趣盎然?
- 南京浦口买房要多少钱一平米 万江街道不动产
- 深圳市友恒投资管理有限公司怎么样? 深圳丰田路天宝物华家园邮编
- 广东省的五个大学城分别是哪些? 南航年中大促怎么买
- 异界静气功 dnf90女气功光兵辅助异界套?女气功异界套选择?
- 气压和钓鱼的关系。 钓鱼和气压的关系
- 手机酷我音乐怎么调音效 酷我在哪里设置音效
- 描写家庭的优美段落 大家庭的温情话
- 韩版女士休闲运动套装适合什么年龄段的人穿
- 江苏无锡惠山区阳山镇都有什么村 百世汇通东桥点部电话号码是多少
- 红油兔丁 红油兔丁豆豉酱
- 茂名亿城名苑价格 宜兴二手房价高不高有人知道吗
- 圆满完成运动餐饮食品安全保障 餐饮服务许可证是营业执照吗?
- 座谈会题目