ZKX's LAB

偏微分方程的分类 双曲型和抛物型偏微分方程

2020-07-21知识11

请问具体如何区分,抛物型偏微分方程,双曲型偏微分方程,椭圆型偏微分方程? 依次是椭圆型,双曲型,双曲型AUxx+BUxy+CUyy+.=0Δ=B^2-4ACΔ=0:抛物型Δ>;0:双曲型Δ椭圆型偏微分方程、抛物型偏微分方程、双曲型偏微分方程的分类依据是什么? 不,你这分类只是linear equations的分类。下午提的问题,既然没人回答,只好自己再查一下。分类依据我做了个图,如下: (经 Siran Li 和 pyxv 提醒,该分类确实只针对两。抛物型偏微分方程的抛物方程 。二阶线性偏微分方程(6)在区域Q内称为是抛物型的,如果存在常数α>;0,使得对于任意ξ∈Rn,(x1,x2,…,xn,t)∈Q 有。的形式。(7)称为具有散度形式的抛物型方程,(6)称为非散度形式的抛物型方程。时,(6)与(7)是有区别的,不能互推。如果方程(6)、(7)中的系数和右端还依赖于u,墷u,则(6)和(7)称为拟线性抛物型方程。抛物型方程和椭圆型方程的研究有相似的地方,它们互相影响、互为借鉴。椭圆型方程理论很多结果在抛物型方程中都有相应的定理,例如先验估计、极值原理等。一阶线性偏微分方程都是抛物型的吗? 抛物型应该是对二阶偏微方程的分类吧,A=0就不适合这种讨论举个例子,按你这样说,对一元二次方程ax^2+bx+c=0,a=0,b=0,c≠0,△=b^2-4ac=0,那表明方程有两个相等实根?2阶多自变量偏微分方程的分类除了椭圆,抛物,双曲,请问何为超双曲型和广义抛物型方程,请给出明确的定义.主要说明3自变量的情况即可, 一阶线性偏微分方程都是抛物型的吗?书上讲二阶偏微的分类如下:二阶偏微分方程的一般.一阶线性偏微分方程都是抛物型的吗?书上讲二阶偏微的分类如下:二阶偏微分方程的一般。偏微分方程的分类 二阶偏微分方程的一般形式为A*Uxx 2*B*Uxy C*Uyy D*Ux E*Uy F*U=0其特征方程为A*(dy)^2-2*B*dx*dy C*(dx)^2=0若在某域内B^2-A*C0则在此域内称为双曲形。偏微分方程的分类 二阶偏微分方程的一般形式为A*Uxx+2*B*Uxy+C*Uyy+D*Ux+E*Uy+F*U=0其特征方程为A*(dy)^2-2*B*dx*dy+C*(dx)^2=0若在某域内B^2-A*C0则在此域内称为双曲形方程其实主要是按特征方程的曲线类型分的注:Uxx表示U对x求二阶.

#偏微分方程

随机阅读

qrcode
访问手机版